YOKOGAWA

DLM 20GA ${ }^{\text {es }}$

Mixed Signal Oscilloscope

Lineup includes $200 \mathrm{MHz}, 350 \mathrm{MHz}, 500 \mathrm{MHz}$ bandwidth models
Lightweight and compact
Large 8.4-inch LCD display
Long memory: Up to $\mathbf{2 5 0}$ M points (with /M3 option)
High speed sampling: Up to $2.5 \mathrm{GS} / \mathrm{s}$ ($1.25 \mathrm{GS} / \mathrm{s}$ with 4 ch)

D上M2000

sability
Compact \& intuitive operation

F
 exibility

Switch between analog and logic channels

Flexible MSO input

Four channels is not sufficient to view the functioning of digital control circuits. The DLM2000 series converts 4 ch of analog input to 8 -bit

We elevated the large (8.4-inch) LCD screen up into the line of sight. Also nto the ine of sight. Also the portrait format saves space on the desk or test bench. A compact "personal oscilloscope" designed for easy viewing and ease of use.

Four channels is not sufficient to view the functioning of digital control circuits. The
logic, and functions as a 3 ch analog +8 -bit logic MSO (mixed signal oscilloscope).
Main : 62.5 k
50ns/div

4 ch analog

Large screen in a compact body ootprint is approximately $2 / 3$ the size of approximately 8)
heet of paper (depth

Vertical position and vertical scale knobs

Horizontal position and horizontal scale knobs

Trigger control keys and level knob
Zoom control keys and magnification knob

Easy-to-Use \& Easy-to-See

Easy to use. Portrait body + large screen makes display easy to see.

4 -way selector button For moving the curso
up/down/left/right

Jog shuttle
For changing values and
moving
USB peripheral connection terminal

3 ch analog +8 -bit logic

The performance of up to 11 inputs by converting to logic
Using logic input, up to 11 input signals can be observed simultaneously as 3 ch of analog and 8 -bit logic. It is not only possible to use logic input for observation of data and control signals, or as a trigger source, but also for logic input analysis of $1^{12} \mathrm{C}$ and SPI serial busses.

Logic probe for the DLM2000

Fast data processing with ScopeCORE
With our proprietary ScopeCORE fast data processing IC, real time display is possible even when simultaneously measuring multichannel signals of 11 inputs.
$\underset{\substack{\text { Example of logic } \\ \text { probe connection }}}{ }$

ScopeCORE fast data processing IC

Large capacity memory up to $\mathbf{2 5 0}$ Mpoints

Long memory is necessary to keep high speed sample rate in long term measurement.
<Basic Formula> Measuring time = Memory length/Sample rate
If 250 Mpoints (Memory expansion option/M3) is installed, Max. 0.2 sec waveform can be captured even at $1.25 \mathrm{GS} / \mathrm{s}$ sample rate when taking 2 ch measurements in Single mode.

Relationship between measuring time and sample rate in $\mathbf{2 5 0}$ Mpoint

Sample rate	Maximum measuring time
$1.25 \mathrm{GS} / \mathrm{s}$	0.2 s
$125 \mathrm{MS} / \mathrm{s}$	2 s
$12.5 \mathrm{MS} / \mathrm{s}$	20 s
$1.25 \mathrm{MS} / \mathrm{s}$	200 s
$125 \mathrm{kS} / \mathrm{s}$	2000 s
$62.5 \mathrm{kS} / \mathrm{s}$	5000 s

Caution is needed when using oscilloscope that does not have enough memory, which can cause lack of sample rate and possible failure capturing accurate waveform.

Waveform in $\mathbf{2 5 0}$ Mpoints can be magnified up to $\times 200000$.

Detailed waveform measured for 20 seconds are shown in $\mathbf{2 0}$ milliseconds and 100 microseconds span.

Zoom \& search function

With 2 different zoom location at the same time and variety of search function lets you pull out and display necessary data effectively.

Zoom two locations simultaneously

Because the DLM2000 series lets you set zoom factors independently, you can display two zoomed waveforms with different time axis scales at the same time. Also, using the Auto Scroll function, you can automatically scroll waveforms captured in long memory and change the zoomed location. With Auto Scroll you can choose forward, backward, fast-forward, scroll speed, and other control options.

Auto Scroll menu

Zoom Search function

This function searches captured waveforms in the long memory and displays waveforms that meet the search criteria in the zoom area. The locations of the found waveforms are marked on screen (∇ shows the current location).

- Waveform search criteria

Edge, edge (with conditions), state pattern, pulse width, state width, serial bus (only on models with the serial bus analysis option)

Waveform search using edge criterion

riginality

Original History function

Automatically save previously captured waveforms

You can replay waveforms later on, so you'll never miss an abnormal waveform
With the DLM2000 series, up to 50000 previously captured waveforms can be saved in the acquisition memory. With the History function, you can display just one or all of the previously captured waveforms (history waveforms) on screen.
You can also perform cursor measurement, computation, and other operations on history waveforms. Using the History function, you can analyze rarely-occurring abnormal signals.

Can reproduce channels and their relationship which is difficult to view in accumulate display mode.

Accumulate display mode

Single acquisition display mode

History search function

Various search methods are available to search waveform which meet your requirements up to 50000 waveform history records.

Example of specified waveform search

Searching for waveforms that pass through or do not pass through a rectangular zone placed on screen.

Searching for waveforms in zones created by moving measured waveforms up/down/ left/right.

Replay function

You can automatically play back, pause, fast forward, and rewind waveform history record.

Large selection of triggers and filters

Real time filter with optimum noise reduction supports a wide range of frequencies (from 8 kHz to 200 MHz)

The DLM2000 series has two types of filters, one processed at the input circuit and one based on MATH functions. These filters are effective for rejecting unwanted signals, allowing observation of only the desired bandwidths.

Real time filters

Each channel has 14 low pass filters available from 8 kHz to 200 MHz . Waveforms of limited bandwidths are stored in internal memory.
Cutoff frequencies: $200 \mathrm{MHz}, 100 \mathrm{MHz}, 20 \mathrm{MHz}, 10 \mathrm{MHz}, 5 \mathrm{MHz}$, $2 \mathrm{MHz}, 1 \mathrm{MHz}, 500 \mathrm{kHz}, 250 \mathrm{kHz}, 125 \mathrm{kHz}$,
$62.5 \mathrm{kHz}, 32 \mathrm{kHz}, 16 \mathrm{kHz}$, and 8 kHz

Computed digital filters

The input waveform can be filtered using an IIR filter, which is a MATH function. Filtered waveforms can be displayed at the same time as the input waveform for comparison. You can select low pass or high pass filters.
Cutoff frequency setting range: 0.01 Hz to 500 MHz

Processing with built-in filters

Filtering of a PWM waveform using computation

Trigger Function capturing combined analog/digital complex waveforms

The DLM2000 series comes with a variety of easy-to-configure triggers combining analog and logic inputs such as edge, enhanced, and B triggers.

-Trigger function example-

- A to $\mathrm{B}(\mathrm{n})$ trigger

Example: Trigger on the 7th edge of signal on B. This is effective for measurements with shifted timing, such as non-standard video signal vertical/horizontal periods or motor reference position pulses and drive pulses.

- Serial pattern trigger (user defined)

Example: Trigger on an arbitrarily set pattern of up to 128 bits. This is effective for detecting ID/Data and other portions of proprietary communication formats.

Pattern configuration screen

- Dual bus trigger

Example: Trigger on a combination of CAN and LIN bus triggers. $I^{2} \mathrm{C}+$ SPI bus triggers, and other combinations are possible.
Trigger when either LIN or CAN bus signal conditions become true

Displays trends of peak-to-peak or pulse width per cycle

-Measure function and statistics -
Twenty-nine waveform parameters are included such as: maximum, minimum, peak-to-peak, pulse width, period, frequency, rise/fall time, and duty ratio. Automated measurement can be performed using up to 30 of these waveform parameters Also, waveform parameters

can be measured repeatedly, and the statistical values displayed (mean, maximum, minimum, standard deviation, etc.).

Measures voltage/time differences automatically

-Cursor Measurement-
Cursors can be placed on the displayed waveform from signal data, and various measurement values at the intersection of the cursor and waveform can be displayed. There are five types of cursor; $\Delta \mathrm{T}, \Delta \mathrm{V}$, $\Delta \mathrm{T} \& \Delta \mathrm{~V}$, Marker, Degree Cursor.

Simultaneous level and time difference measurement with the $\Delta T \& \Delta V$ cursor

Keeps waveforms with one push

-Snapshot-
By pressing the SNAPSHOT key to the lower right of the screen, you can freeze a white trace of the currently displayed waveform on the screen. You can press the key repeatedly and conveniently leave traces for comparing multiple waveforms. Also, snapshot data recorded on screen can be saved or loaded as files, and can be recalled for use as reference waveforms when making comparisons.

Has a GO/NO-GO function

 - Action on trigger-GO/NO-GO can be determined using trigger conditions, zone waveforms, measurement parameters, and other criteria. For NO-GO, actions can be carried out at the same time such as sounding a buzzer, saving the current waveform, or sending notification to a designated e-mail address. Waveforms in which an abnormality occurred can be saved for confirmation and analysis of the phenomena at a later time.

-Trend and histogram displays-

Waveform parameters such as period, pulse width, and amplitude can be measured repeatedly and displayed in graphs. In a single screen you can observe period-byperiod fluctuations, compute amplitudes every screen using multiple waveforms, and display amplitudes as trends. You can also display histograms referencing the voltage or time axis using

Trend display of waveform parameters Histogram display using the time axis values from repeated automated measurement of waveform parameters.

Analyzes frequency spectrums

-FFT analysis-

Up to 2 FFT analyses can be performed simultaneously. FFT can be performed on computed waveforms in addition to the actual waveforms on CH 1 to CH 4 . Analysis can be performed on limited bandwidth waveforms by filtering, periodic changes of rotary objects, and other phenomena.

FFT analysis

Displays stored files in thumbnail format

-Thumbnails of saved files-
Thumbnails of waveform data, waveform image data, and WaveZone files can be displayed. The image and file names are shown so that you can view screen image contents while copying or deleting files. A file can be enlarged to confirm the data.

Thumbnails of saved files

Thumbnail can be viewed full-size

Can check functions with graphical online help

You can view detailed

 graphical explanations of the oscilloscope's functions by pressing the "?" key in the lower left of the screen. This lets you get help on functions and operations on screen without having to consult the user's manual.

Analysis option for application

Serial analysis function options (/F1 to /F9)

—UART (RS232)/I²C/SPI/CAN/CAN FD/LIN/FlexRay/SENT—
Triggers for embedded systems and in-vehicle bus signals are supported along with decode display analysis (serial bus analysis option only on 4 ch models). Logic input can also be used for serial buses (excluding FlexRay, CAN, CAN FD and LIN).

Inputs supported for serial bus analysis

	$I^{2} \mathrm{C}$	SPI	UART	LIN	CAN CAN FD	FlexRay	SENT	
Analog input	Yes							
Logic input	Yes	Yes	Yes	NA	NA	NA	NA	Yes

Intelligent serial bus auto setup: Complicated trigger and decode settings such as bit rate and threshold level are automatically detected by DLM2000.
Simultaneous analyses of four different busses: Up to four busses can be analyzed simultaneously. Waveforms and analysis results from busses with different speeds can be displayed using 2 Zoom windows.

Simultaneous analyses of $I^{2} \mathrm{C}$ and SPI

Four bus decode and list display

Power supply analysis option (/G3, /G4)

Dedicated power supply analysis options are available (4 ch models only) for switching loss, joule integral (${ }^{2}$ t), SOA (safe operating area) analysis, harmonic analysis of power supply current based on EN61000-3-2, and other power parameter measurement such as active power, power factor etc.

Switching loss analysis

Utilizing the long memory capability, voltage and current waveforms over long cycles can be input for computation of switching loss $(\mathrm{V}(\mathrm{t}) \times \mathrm{i}(\mathrm{t}))$.
A wide variety of switching loss analyses are supported, including turn-on/off loss calculation, loss including continuity loss, and loss over long cycles of $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ power line.

PBDH0150 Differential probe (701927)
DC to 150 MHz $1000 \mathrm{Vrms} / \pm 1400$ Vpeak
Differential probe (701926)

DC to 50 MHz 5000 Vrms/7000 Vpeak

Power parameter measurement

Automated measurement of power parameters for up to two pairs of voltage and current waveforms, such as active power, apparent power, power factor etc. Values can be statistically processed and caluculated.

PBC100/PBC050 Current probe (701928/701929) DC to 100 MHz (701928) DC to 50 MHz (701929) 30 Arms

Deskew correction signal source (701936)

Software Control

Free Software	Optional Software	Trial version available		
Off-line waveform			\quad	XviewerLITE
:---				

Main Specification

Frequency characteristics (-3 dB attenuation when inputting a sinewave of amplitude $\pm 3 \mathrm{div})^{4-1 / 2}$					
			DLM202x	DLM203x	DLM205x
$1 \mathrm{M} \Omega$ (when using passive probe)	100 mV to $100 \mathrm{~V} / \mathrm{div}$		200 MHz	350 MHz	500 MHz
	20 mV to $50 \mathrm{mV} / \mathrm{div}$		150 MHz	300 MHz	400 MHz
50Ω	10 mV to $500 \mathrm{mV} / \mathrm{div}$		200 MHz	350 MHz	500 MHz
	2 mV to $5 \mathrm{mV} / \mathrm{div}$		150 MHz	300 MHz	400 MHz
Isolation between channels	Maximum bandwidth: -34 dB (typical value)				
Residual noise level ${ }^{3}$	The larger of 0.4 mV rms or 0.05 div rms (typical value)				
A/D resolution	8 bit (25 LSB/div) Max. 12 bit (in High Resolution mode)				
Bandwidth limit	FULL, $200 \mathrm{MHz}, 100 \mathrm{MHz}, 20 \mathrm{MHz}, 10 \mathrm{MHz}, 5 \mathrm{MHz}, 2 \mathrm{MHz}$, $1 \mathrm{MHz}, 500 \mathrm{kHz}, 250 \mathrm{kHz}, 125 \mathrm{kHz}, 62.5 \mathrm{kHz}, 32 \mathrm{kHz}, 16 \mathrm{kHz}$, 8 kHz (can be set for each channel)				
Maximum sample rate	Real time sampling mode		Interleave OFF $1.25 \mathrm{GS} / \mathrm{s}$ Interleave ON $2.5 \mathrm{GS} / \mathrm{s}$		
	Repetitive sampling mode $125 \mathrm{GS} / \mathrm{s}$				
Maximum record length (Points)					
			Repeat	Single S	Single Interleave
	2 ch model	/M1S	6.25 M	25 M	62.5 M
	4 ch model	/M1	6.25 M	25 M	62.5 M
		/M2	12.5 M	62.5 M	125 M
		/M3	25 M	125 M	250 M
Ch-to-Ch deskew	$\pm 100 \mathrm{~ns}$				
Time axis setting range	$1 \mathrm{~ns} /$ div to $500 \mathrm{~s} /$ div (steps of 1-2-5)				
Time base accuracy ${ }^{\text {¹ }}$	$\pm 0.002 \%$				
Max. acquisition rate ${ }^{4}$	Approx. 20000 waveform/sec/ch (Accumulation mode)				

Data format	Select a data format from the following 8 bit (Non Parity), 7 bit Data + Parity, 8 bit + Parity
UART Trigger modes	Every Data, Data, Error (Framing, Parity)
Auto setup function	Auto setting of bit rate, threshold value, time axis scale, voltage axis scale, and display of analysis results
Analyzable no. of frames	300000 frames max.
Analysis results displays	Analysis no., time from trigger position (Time(ms)), Data (Bin, Hex) display, ASCII display, and Information.
Auxiliary analysis functions	Data search
Analysis result save function	Analysis list data can be saved to CSV-format files
CAN Bus Signal Analysis Functions (/F4, /F6, /F7 and /F8 Options) ${ }^{\text {/6 }}$	
Applicable bus	CAN version 2.0A/B, Hi-Speed CAN (ISO11898), Low-Speed CAN (ISO11519-2)
Analyzable signals	CH1 to CH4, M1 to M2
Bit rate	$1 \mathrm{Mbps}, 500 \mathrm{kbps}, 250 \mathrm{kbps}, 125 \mathrm{kbps}, 83.3 \mathrm{kbps}, 33.3 \mathrm{kbps}$ User defined (an arbitrary bit rate from 10 kbps to 1 Mbps with resolution of 100 bps)
CAN bus Trigger modes	SOF, ID/Data, ID OR, Error (Error Frame, Stuff, CRC), Message and signal (enabled when loading physical values/symbol definitions)
Auto setup function	Auto setting of bit rate, recessive level threshold value, time axis scale, voltage axis scale, and display of analysis results
Analyzable no. of frames	100000 frames max.
Analysis results displays	Analysis no., time from trigger position (Time (ms)), Frame type, ID, DLC, Data, CRC, presence/absence of Ack, information
Auxiliary analysis functions	Data search and field jump functions
Analysis result save function	Analysis list data can be saved to CSV-format files
CAN FD Bus Signal Analysis Functions (/F7 and /F8 Options) ${ }^{\text {-6 }}$	
Applicable bus	CAN FD (ISO 11898-1:2015 and non-ISO)
Analyzable signals	CH1 to $\mathrm{CH} 4, \mathrm{M} 1$ to M2
$\begin{array}{ll}\text { Bit rate } & \text { Arb } \\ & \\ & \text { Da }\end{array}$	1 Mbps, $500 \mathrm{kbps}, 250 \mathrm{kbps}$, User Define (an arbitrary bit rate from 20 kbps to 1 Mbps with resolution of 100 bps)
	8 Mbps, $5 \mathrm{Mbps}, 4 \mathrm{Mbps}, 2 \mathrm{Mbps}, 1 \mathrm{Mbps}, 500 \mathrm{kbps}$, User Define (an arbitrary bit rate from 250 kbps to10Mbps with resolution of 100 bps)
CAN FD bus trigger modes	SOF, ID, ID OR, Error Frame, Message (enabled when loading physical values/symbol definitions)
Auto setup function	Auto setting of bit rate, recessive Level, threshold value, time axis scale, voltage axis scale, and display of analysis results
Analyzable no. of frames	50000 frames max.
Analysis results displays	Analysis no., time from trigger position (Time (ms)), Frame type, ID, DLC, Data, CRC, presence/absence of Ack, information
Auxiliary analysis functions	Data search and field jump functions
Analysis result save function	Analysis list data can be saved to CSV-format files
LIN Bus Signal Analysis Functions (/F4, /F6, /F7 and /F8 Options) ${ }^{\text {/6 }}$	
Applicable bus	LIN Rev. 1.3, 2.0, 2.1
Analyzable signals	CH1 to CH4, M1 to M2
Bit rate	$19.2 \mathrm{kbps}, 9.6 \mathrm{kbps}, 4.8 \mathrm{kbps}, 2.4 \mathrm{kbps}, 1.2 \mathrm{kbps}$ User defined (an arbitrary bit rate from 1 kbps to 20 kbps with resolution of 10 bps)
LIN bus Trigger modes	Break Synch, ID/Data, ID OR, and Error trigger
Auto setup function	Auto setting of bit rate, threshold value, time axis scale, voltage axis scale, and display of analysis results
Analyzable no. of frames	100000 frames max.
Analysis results displays	Analysis no., time from trigger position (Time (ms)), ID, ID-Field, Data, CheckSum, information
Auxiliary analysis functions	Data search and field jump functions
Analysis result save function	Analysis list data can be saved to CSV-format files
FlexRay Bus Signal Analysis Functions (/F5, /F6 and /F8 Options) ${ }^{\text {/6 }}$	
Applicable bus	FlexRay Protocol Version 2.1
Analyzable signals	CH 1 to $\mathrm{CH} 4, \mathrm{M} 1$ to M2
Bit rate	$10 \mathrm{Mbps}, 5 \mathrm{Mbps}, 2.5 \mathrm{Mbps}$
FlexRay bus Trigger modes	Frame Start, Error, ID/Data, ID OR
Auto setup function	Auto setting of bit rate, threshold value, time axis scale, voltage axis scale, and display of analysis results
Analyzable no. of frames	5000 frames max.
Analysis results displays	Analysis no., time from trigger position (Time(ms)), Segment (Static or Dynamic), Indicator, FrameID, PayLoad length, Cycle count, Data, Information
Auxiliary analysis function	Data search
Analysis result save function	Analysis list data can be saved to CSV-format files
SENT Signal Analysis Functions (/F9 Option) ${ }^{\text {/6 }}$	
Applicable standard	J2716 JAN2010 and older
Analyzable signals	CH 1 to CH 4 , logic input, or M1 to M2
Clock period	1 us to 100 us with resolution of 0.01 us
Data type Fast channel	Nibbles/User Defined
Slow channe	Short/Enhanced

SENT trigger modes	Start of fast channel			
Auto setup function	Auto setting of clock period, nibble number, pause pulse, threshold value, time axis scale, voltage axis scale, and display of analysis results			
Analyzable no. of frames	100000 frames max.			
Analysis results displays Fast channel	Analysis no., time from trigger position (Time (ms)), Sync/Cal period, Tick, Status \& Comm, Data, CRC, frame length, information			
Slow channel	Analysis no., time from trigger position (Time (ms)), ID, Data, CRC, information			
Auxiliary analysis functions	Data search and trend functions			
Analysis result save function	Analysis list data and trend data can be saved to CSV-format files			
GP-IB (/C1 and /C11 Options)				
Electromechanical specificatio	ns Conforms to IEEE std. 488-1978 (JIS C 1901-1987)			
Protocol	Conforms to IEEE std. 488.2-1992			
Auxiliary Input				
Rear panel I/O signal	External trigger input (DLM20x2: front panel), external trigger output, GO-NOGO output, video output			
Probe interface terminal (fron	t panel) 2 terminals (DLM20x2), 4 terminals (DLM20x4)			
Probe power terminal (rear pa	anel) 2 terminals (/P2 option), 4 terminals (/P4 option)			
Internal Storage (Standerd model /C9 Option)				
Capacity Standard model: 300 MB , /C9 option: 7.2 GB				
Built-in Printer (/B5 Option)				
Built-in printer 112 mm wide, monochrome, thermal				
USB Peripheral Connection Terminal				
Connector USB type A connector $\times 2$ (front panel $\times 1$, rear panel $\times 1$)				
Electromechanical specifications USB 2.0 compliant				
Supported transfer standards Low Speed, Full Speed, High Speed				
Supported USB Prin devices Mass St contact devices	USB Printer Class Ver. 1.0 compliant EPSON/HP (PCL) inkjet printers USB Mass Storage Class Ver. 1.1 compliant mass storage devices* Please contact your local Yokogawa sales office for model names of verified devices			
USB-PC Connection Terminal				
Connector	USB type B connector $\times 1$			
Electromechanical specificati	ns USB 2.0 compliant			
Supported transfer standards	High Speed, Full Speed			
Supported class	USBTMC-USB488 (USB Test and Measurement Class Ver. 1.0)			
Ethernet (/C10 and /C11 Options)				
Connector RJ-4	-45 connector $\times 1$			
Transmission methods Ether	thernet (1000BASE-T/100BASE-TX/10BASE-T)			
Supported services Server	erver: FTP, HTTP, VXI-11 Client: FTP, SMTP, SNTP, LPR, DHCP, DNS			
General Specifications				
Rated supply voltage	100 to 240 VAC			
Rated supply frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$			
Maximum power consumptio	n 170 VA			
External dimensions	$226(\mathrm{~W}) \times 293(\mathrm{H}) \times 193$ (D) mm (when printer cover is closed, excluding protrusions)			
Weight	Approx. 4.2 kg , With no options			
Operating temperature range $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$			
Error in supply voltage and frequency: Within 1% of rating $* 2$ Value in the case of repetitive phenomenon. The frequency bandwidth of a single-shot phenomenon is the small the two values, DC to sampling frequency/2.5 or the frequency bandwidth of the repetitive phenomenon. *3 When the input section is shorted, the acquisition mode is set to Normal, accumulation is OFF, and the probe attenuation is set to $1: 1$. *4 Acquisition rate does not vary with an increase or decrease in channels. *5 The LCD may include a few defective pixels (within 4 ppm over the total number of pixels including RGB). *6 For 4 ch model only.				
External Dimensions				
		$\stackrel{\stackrel{\circ}{\sim}}{\sim}$		Unit: mm

Model	Suffix code	Description
710105		Digital Oscilloscope DLM2022 2ch, 200MHz
710110^{+1}		Mixed Signal Oscilloscope DLM2024 4ch, 200MHz
710115		Digital Oscilloscope DLM2032 2ch, 350MHz
710120^{*}		Mixed Signal Oscilloscope DLM2034 4ch, 350MHz
710125		Digital Oscilloscope DLM2052 2ch, 500MHz
710130^{*}		Mixed Signal Oscilloscope DLM2054 4ch, 500MHz
Power cord	-D	UL/CSA standard
	-F	VDE standard
	-Q	BS standard
	-R	AS standard
	- H	GB standard
	-N	NBR standard
Language	-HE	English Menu and Panel
	-HC	Chinese Menu and Panel
	-HK	Korean Menu and Panel
	-HG	German Menu and Panel
	-HF	French Menu and Panel
	-HL	Italian Menu and Panel
	-HS	Spanish Menu and Panel
Option	/LN	No switchable logic input (4 ch model only)
	/B5	Built-in printer
	/M1 ${ }^{2}$ (standard)	Memory expansion option (4 ch model only) During continuous measurement: 6.25 Mpoints; Single mode: 25 Mpoints (when interleave mode ON: 62.5 Mpoints)
	/M2 ${ }^{\text {2 }}$	Memory expansion option (4 ch model only) During continuous measurement: 12.5 Mpoints; Single mode: 62.5 Mpoints (when interleave mode ON: 125 Mpoints)
	/M3 ${ }^{\text {2 }}$	Memory expansion option (4 ch model only) During continuous measurement: 25 Mpoints; Single mode: 125 Mpoints (when interleave mode ON: 250 Mpoints)
	/M1S (standard)	Memory expansion option (2 ch model only) During continuous measurement: 6.25 Mpoints; Single mode: 25 Mpoints (when interleave mode ON: 62.5 Mpoints)
	/P2 ${ }^{\text {/3 }}$	Probe power for 2 ch models
	/P4 ${ }^{\text {3 }}$	Probe power for 4 ch models
	/C14 ${ }^{4}$	GP-IB Interface
	/C10 ${ }^{4}$	Ethernet Interface
	/C11 ${ }^{4}$	GP-IB + Ethernet Interface
	/C9	Internal storage (7.2 GB)
	/G2 ${ }^{\text {5 }}$	User defined math (4 ch model only)
	/G3 ${ }^{5}$	Power supply analysis function (4 ch model only)
	/G4 ${ }^{\text {² }}$	Power supply analysis function (includes /G2) (4 ch model only)
	/F1 ${ }^{16}$	UART trigger and analysis (4 ch model only)
	/F2 ${ }^{6}$	$I^{2} \mathrm{C}+$ SPI trigger and analysis (4 ch model only)
	/F3 ${ }^{6}$	UART + ${ }^{2} \mathrm{C}+$ SPI trigger and analysis (4 ch model only)
	/F4 ${ }^{7}$	CAN + LIN trigger and analysis (4 ch model only)
	/F5 ${ }^{7}$	FlexRay trigger and analysis (4 ch model only)
	/F6 ${ }^{7}$	FlexRay+CAN+LIN trigger and analysis (4 ch model only)
	/F7 ${ }^{7}$	CAN+CAN FD+LIN trigger and analysis (4 ch model only)
	/F8 ${ }^{7}$	FlexRay+CAN+CAN FD+LIN trigger and analysis (4 ch model only)
	/F9	SENT analysis (4 ch model only)
	/EX22 ${ }^{8}$	Attach two 701946 probes (For 2ch, 200 MHz models)
	/EX24*	Attach four 701946 probes (For 4ch, 200 MHz models)
	/EX52 ${ }^{\text {a }}$	Attach two 701946 probes (For 2ch, 350/500 MHz models)
	/EX54 ${ }^{\circ}$	Attach four 701946 probes (For 4ch, 350/500 MHz models)

*1: Logic probes sold separately. P
${ }^{2}$ 2: One of these must be selected.
3: Specify this option when using current probes or other differential probes that don't support probe interfac
*4 to 7: Only one from the each note can be selected at a time.
8: The 701938 probes are not included when this option is selected
'9: The 701939 probes are not included when this option is ssele
Standard Main Unit Accessories

Part Name	Quantity
Power cord	1
Passive probe, model 701938 ($200 \mathrm{MHz}, 1.5 \mathrm{~m}$) For models 710105, 710110¹	Per number of channels
Passive probe, model 701939 ($500 \mathrm{MHz}, 1.3 \mathrm{~m}$) For models 710115, 710120, 710125, 710130²	Per number of channels
Protective front cover	1
Soft carrying case for probes	1
Printer roll paper (for /B5 option)	1 roll
User's manuals ${ }^{3}$	1 set

1. The 701938 probes are not included when/EX22 or /EX24 is selected.

2: The 701939 probes are not incluced when /EX52 or EX54 is selected.
[DLM is a pending trademark or registered trademark of Yokogawa Electric Corporation.]
Any company's names and product names appearing in this document are the registered trademarks or rademarks of their respective companies.

YOKOGAWA

YOKOGAWA METERS \& INSTRUMENTS CORPORATION

Global Sales Dept. /Phone: +81-422-52-6237 Facsimile: +81-422-52-6462 E-mail: tm@cs.jp.yokogawa.com

YOKOGAWA CORPORATION OF AMERICA
YOKOGAWA EUROPE B.V.
YOKOGAWA SHANGHAI TRADING CO., LTD.
YOKOGAWA ELECTRIC KOREA CO., LTD.
YOKOGAWA ENGINEERING ASIA PTE. LTD
YOKOGAWA INDIA LTD
YOKOGAWA ELECTRIC CIS LTD
YOKOGAWA AMERICA DO SUL LTDA.
YOKOGAWA AUSTRALIA PTY. LTD.
YOKOGAWA MIDDLE EAST \& AFRICA B.S.C(c)

Phone: +1-770-253-7000 Phone: +31-88-4641000 Phone: +86-21-6239-6363 Phone: +82-2-2628-3810 Phone: +65-6241-9933 Phone: +91-80-4158-6000 Phone: +7-495-737-7868 Phone: +55-11-5681-2400 Phone: +61-2-8870-1100 Phone: +973-17-358100

Additional Option License for DLM2000*

Model	Suffix code	Description
709810	-G2	User defined math (4 ch model only)
	-G3	Power supply analysis function (4 ch model only)
	-G4	Power supply analysis function (includes G2) (4 ch model only)
	-F1	UART trigger and analysis (4 ch model only)
	-F2	$1^{2} \mathrm{C}+$ SPI trigger and analysis (4 ch model only)
	-F3	UART + I ${ }^{2} \mathrm{C}+$ SPI trigger and analysis (4 ch model only)
	-F4	CAN + LIN trigger and analysis (4 ch model only)
	-F5	FlexRay trigger and analysis (4 ch model only)
	-F6	FlexRay + CAN + LIN trigger and analysis (4 ch model only)
	-F7	CAN+CAN FD+LIN trigger and analysis (4 ch model only)
	-F8	FlexRay+CAN+CAN FD+LIN trigger and analysis (4 ch model only)
	-F9	SENT analysis (4 ch model only)
	-X1	F4 -> F7/F6 -> F8 (add CAN FD)

Accessory Models		
Name	Model	Specification
Logic probe (PBL100)	701988	$1 \mathrm{M} \Omega$ input resistance, toggle frequency of 100 MHz
Logic probe (PBL250)	701989	$100 \mathrm{k} \Omega$ input resistance, toggle frequency of 250 MHz
Passive probe ${ }^{1+}$	701938	$10 \mathrm{M} \Omega$ (10:1), $200 \mathrm{MHz}, 1.5 \mathrm{~m}$
Passive probe ${ }^{4}$	701939	$10 \mathrm{M} \Omega$ ($10: 1$), $500 \mathrm{MHz}, 1.3 \mathrm{~m}$
Miniature passive probe	701946	$10 \mathrm{M} \Omega$ (10:1), $500 \mathrm{MHz}, 1.3 \mathrm{~m}$
FET probe	700939	DC to 900 MHz bandwidth, $2.5 \mathrm{M} / 1.8 \mathrm{pF}$
Active probe (PBA1000)	701912	DC to 1 GHz bandwidth, $100 \mathrm{k} / 0.9 \mathrm{pF}$
100:1 voltage probe	701944	DC to 400 MHz bandwidth, $1.2 \mathrm{~m}, 1000 \mathrm{Vrms}$
100:1 voltage probe	701945	DC to 250 MHz bandwidth, $3 \mathrm{~m}, 1000 \mathrm{Vrms}$
Differential probe	701920	DC to 500 MHz bandwidth, max. $\pm 12 \mathrm{~V}$
Differential probe	701921	DC to 100 MHz bandwidth, max. $\pm 700 \mathrm{~V}$
Differential probe	701922	DC to 200 MHz bandwidth, max. $\pm 20 \mathrm{~V}$
$\begin{aligned} & \text { Differential probe } \\ & \text { (PBDH1000) } \end{aligned}$	701924	DC to 1 GHz bandwidth, $1 \mathrm{M} \Omega$, max. $\pm 25 \mathrm{~V}$
Differential probe	701926	DC to 50 MHz bandwidth, $5000 \mathrm{Vrms} / 7000$ Vpeak
$\begin{aligned} & \hline \text { Differential probe } \\ & \text { (PBDH0150) } \\ & \hline \end{aligned}$	701927	DC to 150 MHz bandwidth, max. $\pm 1400 \mathrm{~V}$
Differential probe	700924	DC to 100 MHz bandwidth, max. $\pm 1400 \mathrm{~V}$
Differential probe	700925	DC to 15 MHz bandwidth, max. $\pm 500 \mathrm{~V}$
Current probe	701917	DC to 50 MHz bandwidth, 5 Arms, High-sensitivity
Current probe	701918	DC to 120 MHz bandwidth, 5 Arms, High-sensitivity
Current probe (PBC050) ${ }^{2}$	701929	DC to 50 MHz bandwidth, 30 Arms
Current probe (PBC100) ${ }^{2}$	701928	DC to 100 MHz bandwidth, 30 Arms
Current probe ${ }^{-2}$	701930	DC to 10 MHz bandwidth, 150 Arms
Current probe ${ }^{-2}$	701931	DC to 2 MHz bandwidth, 500 Arms
Deskew correction signal source	701936	For deskew correction
Printer roll paper	B9988AE	Lot size is 10 rolls, 10 meters each
Probe stand	701919	Round base, 1 arm
Soft carrying case	701964	With 3 pockets for storage

1: As the accessories for 701938,701939 probe, various adapters are available. Please refer to DL series ACc
2: Current probes' maximum input current may be limited by the number of probes used at a time.

Accessory Software

Name	Model	Specification
MATLAB tool kit	701991	MATLAB plug-in
Xviewer	701992-SP01	Standard version
	701992-GP01	With MATH functions

Yokogawa's Approach to Preserving the Global Environment

- Yokogawa's electrical products are developed and produced in facilities that have received ISO14001 approval.
- In order to protect the global environment,Yokogawa's electrical products are designed in accordance with Yokogawa's Environmentally Friendy Product Design Guidelines and Product Design Assessment Criteria

This is a Class A instrument based on Emission standards EN61326-1 and EN55011, and is designed for an industrial environment.
in residential cause redio interference in which case users will be responsible for any interference which they cause
— NOTE Before operating the product, read the user's manual thoroughly for proper and

