General Specifications

IR400 NDIR TYPE INFRARED GAS ANALYZER (5-COMPONENT ANALYZER)

GS 11G02N01-01E

The IR400 infrared gas analyzer is capable of measuring the concentrations of NO, SO₂, CO₂, CO, CH₄ and O₂ components in sample gas.

NO, SO₂, CO₂, CO and CH₄ are measured by nondispersive infrared method (NDIR), while O₂ is measured by built-in paramagnetic sensor or external zirconia sensor. A maximum of 5 components including O₂ (up to 4 components except for O₂ measurement) are simultaneously measurable.

The mass flow type twin detector of high sensitivity and reliability adopted in the infrared ray method detection unit makes the measurement hardly affected by interfering components.

In addition, the IR400 includes a microprocessor and has a large-size liquid crystal display, providing easy operation, high accuracy and multiple functions.

Optimum as an analyzer unit of measurement system for combustion exhaust gas from refuse incinerator and boiler, or gas from different industrial furnaces.

FEATURES

- Simultaneous and continuous measurement of up to 5 components including O₂ O₂ and 4 components selected from among NO, SO₂, CO, CO₂, and CH₄.
- Minimal interference from other gas components The mass flow type twin detector of high sensitivity and reliability minimizes interference from other gas components, ensuring excellent stability.
- Extensive functions
 Incorporating O₂ correction, average value computing, automatic calibration, one touch calibration, upper/lower limit alarm, remote measurement range changeover, range identification signal output, etc., the analyzer accommodates different application requirements.
- Easy-to-read, large LCD Large LCD provides clear indications of all measured components and computed values and easy interactive operation.
- 19-inch rack mounting Unitized construction of the main body on the 19inch rack and of the signal input/output terminal module allows easy configuration of a gas analyzer system.
- Maximum measuring range ratio A maximum range ratio of 1:25 is achieved.

SPECIFICATIONS

Standard Specifications

Measurement principle:

NO, SO ₂ , CO ₂ , CO, CH ₄ :	Non-dispersive infrared method
	Single light source-double
	beams
O ₂ :	Paramagnetic type (built-in),

or zirconia type (external)

Measurable gas components and measuring ranges:

Range Component	Minimum range	Maximum range	
NO	0 – 50 ppm	0 – 5000 ppm	
SO ₂	0 – 50 ppm	0 – 10 vol%	
CO ₂	0 – 20 ppm	0 – 100 vol%	
CO	0 – 50 ppm	0 – 100 vol%	
CH₄	0 – 200 ppm	0 – 100 vol%	
O₂ (paramagnetic)	0 – 5 vol%	0 – 25 vol%	
O2 (zirconia)	0 – 5 vol%	0 – 25 vol%	
		T01.eps	

• Measurement of up to 5 components including O_2 .

- 1 or 2 measuring range per component.
- Measuring range ratio ≤ 1:5 (O₂ analyzer)

 \leq 1:25 (except O₂ analyzer) For measurable components and possible combina tions of measuring ranges, refer to Tables 1-(1) to

(7). Display:

Digital indication in 4 digits (LCD with backlight) • Instantaneous value of each component

- Instantaneous value of each component
 Instantaneous value after O₂ correction
- (only in NO, SO₂, CO with O₂ measurement) • Average value after O₂ correction
- (only in NO, SO₂, CO with O₂ measurement) • Average O₂ value

Analog output signal:

 * Input/Output of analog signals is available in combination with the input/output terminal module.
 4 to 20 mA DC or 0 to 1 V DC, non-isolated, 12 points max.
 Analog output corresponds one-to-one with measured value indication.

	Permissible load resistance;
	550 Ω max. for 4 to 20 mA DC
	100 kΩ min. for 0 to 1 V DC
	* Refer to Table 8 for the channel
	numbers of displayed values and
	analog output signals.
Analog input s	
	For signal input from external O ₂ analyzer.
	Signal requirement;
	(1) Signal from Yokogawa's zirconia O_2
	sensor (Model ZX8D*C or ZX8D*D)
	(2) 0 to 1V DC from an O_2 sensor
	Input section is not isolated. This
	feature is effective when built-in O ₂
	sensor is not used.
	(An input signal triggers measured
	concentration indication and O ₂
	correction.)
	* External O ₂ sensor should be
	purchased separately.
Relay contact	output:
	1a contact (250 V AC/2 A, resistive load)
	Instrument error, calibration error,
	range identification, auto calibration
	status, pump ON/OFF, peak alarm.
	1c contact (250 V AC/2 A, resistive load)
	Selectable 6 outputs.
	High/Low limit alarm contact output
	(for each channel).
	Power disconnection alarm.
	* All relay contacts are isolated mutually
	and from the internal circuit.
Contact input:	Non-voltage contact (ON/0 V, OFF/5 V
	DC, 5 mA flowing at ON).
	Remote range changeover, auto
	calibration remote start, remote hold,
	average value reset, pump ON/OFF.
	Isolated from the internal circuit with
	photocoupler. Contact inputs are not
	isolated from one another.
Transmission of	
	Solenoid valve drive signal for automatic
	calibration.
	Transistor output (100 mA or less)
	* For details, see External Connection
	Diagram on page 15.
	Voltage rating; 100 to 240 V AC
	Allowable range; 85 to 264 V AC
	Frequency; 50/60 Hz
	Power consumption; 250 VA max.
	Inlet; Conform to EN60320
	Protection Class 1
Operating con	ditions:
	Ambient temperature; -5 to 45°C
	Ambient humidity; 90%RH max.,
	non-condensing.
Storage condit	
	Ambient temperature; -20 to 60°C
	Ambient humidity; 90%RH max.,
	non-condensing
Dimensions (H	5
•	Analyzer main unit;
	$177 \times 483 \times 578 \text{ mm}$
	Input/Output terminal module;

Weight: Approx. 22 kg (only analyzer) Finish color: Front panel; Off-white (Munsell 10Y7.5/0.5 or equivalent) Plating, Steel-blue (gray) Casing; Enclosure: Steel casing, for indoor use Material of gas-contacting parts: Gas inlet/outlet; SUS304 Sample cell; SUS304/neoprene rubber Infrared-ray transmitting window; CaF2 O2 sensor sampling cell: SUS316 Internal piping; Toaron tube, Teflon tube Gas inlet/outlet: Rc1/4 or 1/4 NPT internal thread Purge gas flow rate: 1 L/min (when required) Safety and EMC conforming standards: Installation altitude: 2000 m or less 2 (Note) Pollution degree; II (Note) Installation category; Note: Installation category, called overvoltage category, specifies impulse with standing voltage. Category II is for electrical equipment. Pollution degree indicates the degree of existence of solid, liquid, gas or other inclusions which reduce dielectric strength. Degree 2 is the nomal indoor environment. Safety; EN61010-1 EN61326-1 Class A, Table 2, EMC; EN61326-2-3、 EN61000-3-2, EN61000-3-3 EMC Regulatory Arrangement in Australia and New Zealand (RCM) EN61326-1 Class A Note: The product mounted in a steel enclosure conforms to the requirements of EMC directive.

CAUTION

The instrument is a Class A product, and it is designed for use in the industrial environment. Please use this instrument in the industrial environment only.

Standard Functions

Output signal	Output signals are held during manual and auto calibrations by activation of holding (turning "ON" its setting). The values to be held are the ones just
	before start calibration mode. Indication values will not be held.
Remote outp	
	Output signal is held at the latest value or setting value by short-circuiting the remote output holding input terminals. Holding is maintained while the terminals are short-circuited. Indication values will not be held.
Switch range	:
Manual;	The range changeover is available in manual, auto, and remote modes. Only preset changeover method is effective. Allows range to switch by key operation.

164 × 316 × 55 mm

Auto;	Allows range to switch from low to high
	range when 90%FS or more is available in the low range.
	Allows range to switch from high to low
	range when 80%FS or less is available
Demeter	in the low range.
Remote;	Non-voltage contact input (for measurable components)
	Allows range to switch via an external
	signal when remote range changeover
Range identifi	input is received.
	The present measuring range is
	identified by a contact signal.
	The contact output terminals for each component are short-circuited when the
	first range is selected, and when the
	second range is selected, the terminals
Auto calibratio	are open.
	Auto calibration is carried out
	periodically at the preset cycle.
	When a standard gas cylinder for calibration and a solenoid valve for
	opening/closing the gas flow line are
	prepared externally by the customer,
	calibration will be carried out with the
	solenoid valve drive contacts for zero calibration and each span calibration
	turned on/off sequentially at the set auto
	calibration timing.
Auto calibra	ation cycle setting; Auto calibration cycle is set.
	Setting is variable within 1 to 99 hours
	(in increments of 1 hour) or 1 to 40 days
Gas flow ti	(in increments of 1 day).
	The time for flowing each calibration gas
	in auto calibration is set.
	Settable within 60 to 900 seconds (in increments of 1 second)
Auto calibratio	on remote start:
	Auto calibration is carried out only
	once according to an external input signal. Calibration sequence is settable
	in the same way as the general auto
	calibration.
	Auto calibration is started by opening the auto calibration remote start input
	terminals after short-circuiting for 1.5
	seconds or longer.
Auto zero cali	bration: Auto zero calibration is carried out
	periodically at the preset cycle.
	This cycle is independent of "Auto
	calibration" cycle. When zero calibration gas and solenoid
	valve for opening/closing the calibration
	gas flow line are prepared externally by
	the customer, zero calibration will be carried out with the solenoid valve drive
	contact for zero calibration turned on/off
_	at the set auto zero calibration timing.
Auto zero	calibration cycle setting;
	Auto zero calibration cycle is set. Setting is variable within 1 to 99 hours
	(in increments of 1 hour) or 1 to 40 days
	(in increments of 1 day)

Gas flow time setting;
The time for flowing zero gas in auto
zero calibration is set.
Settable 60 to 900 seconds (in
increments of 1 second)
Upper/lower limit alarm:
Alarm contact output turns on when
measurement value reach the preset
upper or lower limit alarm value.
Contacts close when the instantaneous
value of each component becomes
larger than the upper alarm limit value or
smaller than the lower alarm limit value.
Instrument error contact output:
Contacts close at occurrence of
analyzer error No. 1, 3 or 10.
Calibration error contact output: Contacts close at occurrence of manual
or auto calibration error (any of errors No. 4 to 9).
Auto calibration status contact output:
Contacts close during auto calibration.
Pump ON/OFF contact output:
During measurement, contacts close.
While calibration gas is flowing, contacts
open. Contacts are connected in power
supply of pump, and stop the sample
gas while calibration gas is flowing.

Optional Functions

O₂ correction: Conversion of measured NO, SO₂ and CO gas concentrations into values at reference O₂ concentration.

Correction formula:
$$C = \frac{21 - On}{21 - Os} \times Cs$$

Where:

- C: Sample gas concentration after O₂ correction
- Cs: Measured concentration of sample gas
- Os: Measured O₂ concentration (limit setting: 1 to 20%O₂, default 17%)
- On: Reference O₂ concentration (value changeable by setting: 0 to 19%O₂, default 4%)

The result of calculation is indicated and output in an analog output signal.

Average value after O₂ correction and O₂ average value calculation:

The result of O_2 correction or instanta neous O_2 value can be outputted as an average value in the determined period of time.

Used for averaging is the moving average method in which sampling is carried out at intervals of 30 seconds. (Output is updated every 30 seconds. It is the average value in the determined period of time just before the latest updating.)

Averaging time is settable within 1 to 59 minutes (in increments of 1 minute) or 1 to 4 hours (in increments of 1 hour).

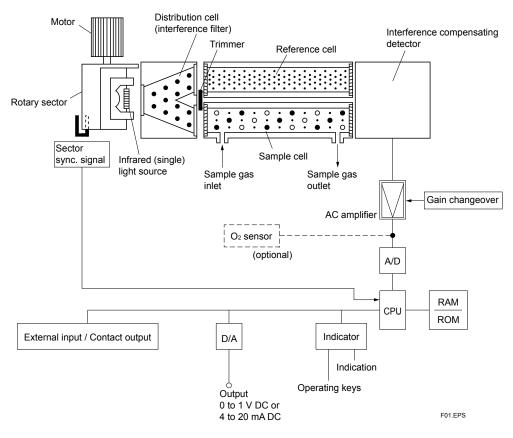
CO concentrat	The above-mentioned output of average value is started from the initial state by opening the average value resetting input terminals after short-circuiting for 1.5 seconds or longer. Output is reset by short-circuiting and restarted by opening. tion peak count alarm: (available only for $CO + O_2$ measurement) Alarm output turns on according to the preset concentration and count. Whenever the instantaneous value of CO exceeds the preset concentration value, count increments. If the count exceeds the preset value in one hour, the alarm contacts close.
Performance)

F

Repeatability:	$\pm 0.5\%$ of full scale ($\pm 1\%$ of full scale for
	range less than 0-50 ppm)
Linearity:	±1% of full scale
Zero drift:	±1% of full scale/week
	(±2% of full scale/week for range equal
	to or more than 50 ppm and less than
	200ppm)
	$(\pm 2\%$ of full scale/day for range less than
	0-50 ppm)
Span drift:	±2% of full scale/week
	(±2% of full scale/day for range less than
	0-50 ppm)
Response tim	e (for 90%FS response) :
	Within 60 seconds including
	replacement time of sample gas
	(when gas flow rate is 0.5 L/min). Gas
	replacement time depends on the
	number of measuring components, and
	measuring range effects of interfering
	gases.
Effects of inter	foring gooog

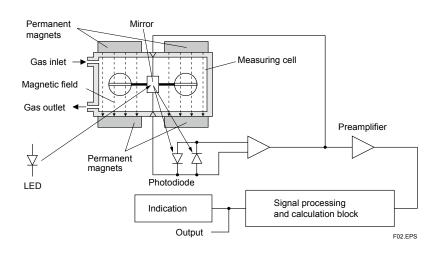
Effects of interfering gases

When sample gas contains gas components listed below, the measurement accuracy may suffer. Consult Yokogawa for countermeasures or effect on accuracy.


Analyzer	Interference gas	Effect
SO ₂ analyzer	NO2	50 ppm of NO2 is equivalent to -6 ppm of SO2
CO analyzer	CO2	15% of CO2 is equivalent to 7 to 10 ppm of CO
	N2O	1000 ppm of N2O is equivalent to 80 ppm of CO
CH4 analyzer CO2 15% of C		15% of CO2 is equivalent to approx. 3 ppm of CH4
	•	T03s.EPS

Standard Requirements for Sample Gas

Flow rate:	0.5±0.2 L/min
Temperature:	
Pressure:	10 kPa or less (Gas outlet side should
_ /	be open to the atmospheric air.)
Dust:	100 µg/Nm ³ or less in particle size of 1
	µm or less
Mist:	Unallowable
Moisture:	Below a level where saturation occurs at
	2°C (condensation unallowable).
Corrosive con	nponent: HCl 1 ppm or less
	for calibration:
U	Zero gas; Dry N ₂
	Span gas; Each sample gas having
	concentration 90 to 100%
	of its measuring range
	(recommended).
	Gas beyond concentration
	100%FS is unusable.
	In case a zirconia O_2 analyzer is
	installed externally and calibration is
	carried out on the same calibration gas
	line:
	Zero gas; Dry air or atmospheric air
	(provided without CO ₂ sensor)
	Span gas; For other than O ₂
	measurement, each sample
	gas having concentration
	90 to 100% of its measuring
	range.
	For O ₂ measurement, O ₂ gas
	of 1 to 2 vol%.


Installation Requirements

- Indoor use: Avoid exposure to direct sunlight, weather, and radiant heat from hot substances. Where exposure to such conditions are unavoidable, a protective hood or cover should be prepared.
- Minimal vibration
- •A clean atmosphere

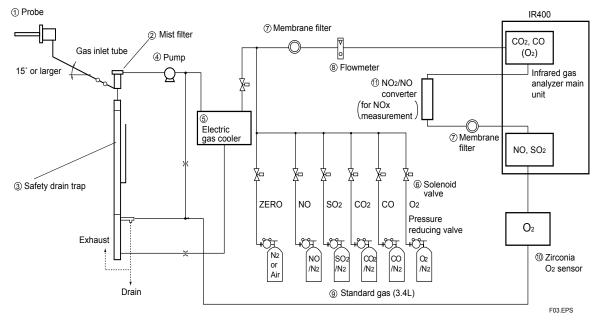

Diagram of measurement principle of infrared gas analyzer (NO, SO₂, CO₂, CO, CH₄)

Diagram of measurement principle of paramagnetic oxygen analyzer

Example of gas sampling system configuration

The following illustrates a typical system configuration for five component gas measurement for monitoring combustion exhaust gas from boiler, refuse incinerator, etc. Contact Yokogawa for system configuration matching the particular use or further information.

Typical sampling system components

No.	Item	Description		
1	Probe	With a heating type stainless steel filter. Standard pore size: 40 μm		
2	Mist filter	Separates drain and removes dust and mist.		
3	Safety drain trap	Prevents drain from being sucked. Composite operation of constant-pressure bubbler.		
4	Pump	Sucks in sample gas. Sample gas flow rate: approx. 2 L/min		
5	Electric gas cooler	Dehumidifies sample gas.		
6	Solenoid valve	Used for introducing calibration gas.		
7	Membrane filter	Glass fiber or PTFE filter removes fine dust. Dust buildup conditions can be monitored through front panel of analyzer.		
8	Flowmeter	Adjusts and monitors sample gas flow rate.		
9	Standard gas	Used for zero/span calibration. Zero, NO, SO ₂ , CO, CO ₂ , and O ₂ gas cylinders.		
10	Zirconia O2 sensor	Not required when built-in type is used. Installed externally. Measures O ₂ concentration (0 to 25%) of sample gas.		
(1)	NO ₂ /NO converter	Required for NOx measurement. Converts NO ₂ to NO gas efficiently using special catalyst.		

For each sampling component, consult with Yokogawa.

T20.EPS

MODEL AND SUFFIX CODES

	[Style:S3]				tyle:S3]	
Model	Suffix code	Option code	e Description Infrared gas analyzer 19-inch rack mounting type with slide rail			
IR400						
Measurable component (note 8)	- - - - - - - - - - - - - - - - - - -		1st NO SO ₂ CO CH ₄ NO NO CO ₂ NO	SO ₂ CO CO SO ₂	3rd	4th
O ₂ Analyzer	-L N 1 2 3		NO Without O ₂ ana External zircon (note 10) External O ₂ ana	SO2 Ilyzer ia type O ₂ sense	CO CO ₂ or (purchase sep	CO parately: ZX8D)
1st Componen 1st Range (note 2)	A B C D W E F G H J K L M P Q R S T U		0-20 ppm (not 0-50 ppm 0-100 ppm 0-200 ppm 0-300 ppm 0-500 ppm 0-500 ppm 0-2000 ppm 0-2000 ppm 0-1% 0-2% 0-3% 0-5% 0-10% 0-20% 0-10% 0-20% 0-40% 0-50% 0-70% 0-100%	e 3)		
1st Compone 2nd Range (note 2)	nt A B C D W E F G H J K L M P Q R S T U N		0-50 ppm 0-100 ppm 0-200 ppm 0-250 ppm 0-300 ppm 0-500 ppm 0-1000 ppm 0-2000 ppm 0-2000 ppm 0-2000 ppm 0-2% 0-2% 0-3% 0-3% 0-5% 0-10% 0-20% 0-20% 0-40% 0-50% 0-70% 0-100% Not available			
2nd Compone 1st Range (note 2)			0-50 ppm 0-100 ppm 0-200 ppm 0-250 ppm 0-300 ppm 0-500 ppm 0-1000 ppm 0-2000 ppm 0-2000 ppm 0-2% 0-3% 0-3% 0-2% 0-3% 0-2% 0-10% 0-20% 0-40% 0-50% 0-70% 0-70% Not available			

To be continued.

T02-1.ai

MODEL AND SUFFIX CODES

Model IR400	Suffix code	Option code	Description
2nd Component 2nd Range (note 2)	B C D W E F G H J K L M P Q R S T U N		Infrared gas analyzer 19-inch rack mounting type with slide rail 0-100 ppm 0-200 ppm 0-250 ppm 0-300 ppm 0-500 ppm 0-1000 ppm 0-2000 ppm 0-2000 ppm 0-2000 ppm 0-2000 ppm 0-20% 0-3% 0-3% 0-5% 0-10% 0-20% 0-40% 0-20% 0-40% 0-50% 0-70% 0-70% 0-100% Not Available
3rd Component 1st Range (note 2)	A B C D W E F G H J K L M P Q R S T U N		0-50 ppm 0-100 ppm 0-200 ppm 0-250 ppm 0-300 ppm 0-500 ppm 0-1000 ppm 0-2000 ppm 0-5000 ppm 0-5000 ppm 0-10% 0-2% 0-3% 0-3% 0-5% 0-10% 0-20% 0-40% 0-20% 0-40% 0-50% 0-70% 0-100% Not Available
3rd Component 2nd Range (note 2)	B C D W E F G H J K L M P Q R S T U N		0-100 ppm 0-200 ppm 0-250 ppm 0-300 ppm 0-500 ppm 0-2000 ppm 0-2000 ppm 0-2000 ppm 0-5000 ppm 0-1% 0-2% 0-3% 0-3% 0-5% 0-10% 0-20% 0-40% 0-20% 0-70% 0-70% Not Available
4th Component 1st Range (note 2)	A B C D W E F G H J K L M P Q R S T U N		0-50 ppm 0-100 ppm 0-200 ppm 0-250 ppm 0-300 ppm 0-500 ppm 0-1000 ppm 0-2000 ppm 0-2000 ppm 0-1% 0-20% 0-5% 0-3% 0-5% 0-10% 0-20% 0-40% 0-20% 0-40% 0-50% 0-70% 0-100% Not Available

To be continued.

T02-2.ai

Model	Suffix code				Option code	Description
IR400						Infrared gas analyzer 19-inch rack mounting type with slide rail
4th Component 2nd Range (note 2)		B C D W E F G H J K L M P Q R S T U N				0-100 ppm 0-200 ppm 0-250 ppm 0-300 ppm 0-500 ppm 0-1000 ppm 0-2000 ppm 0-2000 ppm 0-10% 0-2% 0-3% 0-5% 0-10% 0-5% 0-10% 0-50% 0-70% 0-100% Not available
O ₂ Analyzer 1st Range (note 2)		1 2 3 N				0-5% 0-10% 0-25% Not available
O ₂ Analyzer 2nd Range (note 2)		2 3 N				0-10% 0-25% Not available
Output		-4				4-20 mA DC, non-isolation 0-1 V DC, non-isolation
Piping			R T			Rc 1/4 1/4 NPT
Indication, Power	Cable (note 7)			J E U		Japanese, Power Cable; rated voltage 125 V AC English, Power Cable; rated voltage 125 V AC (UL) English, Power Cable; rated voltage 250 V AC (CEE)
Option	O ₂ correction and O ₂ avara Communication Internal purge (note 5) Relay board (note 6)	age (note 4)			/K /A /C /P /R	With O ₂ correction and O ₂ average value With peak count alarm (note 4) RS2232C (note 9) Analyzer internal purging With dedicated cable

Footnotes:

- 1: A signal from the external O₂ analyzer should be 0-1 V DC linear to full scale.
- 2: Possible combinations of ranges are specified in separate tables.
- 3: Only available for CO₂ measurement. Option code "/P," Analyzer internal purging, must be specified.
 4: O₂ correction is available only for NO, CO, and SO₂. Both average value output after O₂
- correction and average O2 value output are provided at the same time. A peak count alarm can be provided only for CO measurement.
- 5: When internal purging is specified with 3- or 4-component analyzers, only one set of gas inlet/outlet can be used and thus NO2/NO converter cannot be connected between two measurement sections.
- 6: Should be specified when using a solenoid valve for automatic calibration.
- 7: Suffix Codes "E" and "U" are power cables with different voltage rating and plug type. Select appropriate code according to the operating power supply voltage to be used in the field. Suffix Code "E" is of the North American plug type and "U" of the European type.
 8: For NOx measurement, a NO₂/NO converter (P/N K9350LE or K9350LF) should be purchased separately.
- 9: Should be specified when using Modbus[™] communication. 10: ZX8D style D is specified for CE marking.

Measurable components and ranges - availability check table -Table 1. Single-component analyzer (NO, SO₂, CO₂, CO, CH₄)

_	2nd range	Α	В	С	D	W	E	F	G	н	J
1s	t range	0-50ppm	0-100ppm	0-200ppm	0-250ppm	0-300ppm	0-500ppm	0-1000ppm	0-2000ppm	0-5000ppm	0-1%
V	0-20ppm	O	0	0	O	O	0	_	_	_	_
А	0-50ppm	_	☆□◎○	☆□◎○	*□©0	*□©0	☆□◎○	☆□◎○	-	_	_
В	0-100ppm	_	_	☆□◎○	*□©0	*□©0	☆□◎○	☆□◎○	☆ □©0	_	_
С	0-200ppm	_	—	_	☆ □©O∆	☆ □©0∆	☆□©O∆	☆□©O∆	☆□©O∆	☆ □©0∆	_
D	0-250ppm	_	_	_	_	_	_	☆□©O∆			_
W	0-300ppm	_	_	_	_	_	_	☆ □©0∆	☆ □©0∆	☆□©O∆	_
Е	0-500ppm	_	_	_	_	_	_	☆□©O∆	☆□©O∆	☆□©O∆	000/
F	0-1000ppm	_	_	_	_	_	_	_	☆ □©0∆	☆□©O∆	000/
G	0-2000ppm	_	_	_	_	_	_	_		☆□©O∆	
н	0-5000ppm	_	_	_	_	_	_	_	_	_	000/
J	0-1%	_	_	_	_	_	_	_		_	_
Κ	0-2%	_	_	_	_	_	_	_		_	_
L	0-3%	_	_	_	_	_	_	_	_	_	_
М	0-5%	_	_	-	_	_	_	-	I	_	_
Ρ	0-10%	_	_	_	_	_	_	_	_	_	_
Q	0-20%	_	_	_	_	_	_	_	-	_	_
R	0-40%	_	-	_	_	_	_	-	I	_	_
s	0-50%	_	_	_	_	_	_	_	-	_	-
Т	0-70%	_	_	_	_	_	_	_	-	_	_
U	0-100%	_	_	_	_	_	_	_		_	_

	2nd range	К	L	М	Р	Q	R	S	Т	U
1s	t range	0–2%	0–3%	0–5%	0–10%	0–20%	0–40%	0–50%	0–70%	0–100%
V	0–20ppm	—	-	Ι	-	—	-	-		
А	0–50ppm	—	—	—	—	—		—		I
В	0–100ppm	—	-	_	_	-		—		Ι
С	0–200ppm	—	—	—	—	-	—	_	_	-
D	0–250ppm	—	—	—	_	-	_	—	_	-
	0–300ppm		_	_	_	-	_	_	_	_
Е	0–500ppm	—	—	—	—	-	—	_	_	-
F	0–1000ppm	\Box \bigcirc \Box	—	—	_	—	_	—	_	-
G	0–2000ppm	\Box \bigcirc \Box		—	_	—	-	_		I
Н	0–5000ppm	$\Box \odot O \Delta$				—	-	—		
J	0–1%	$\Box \odot O \Delta$				©ΟΔ	—	—	_	-
к	0–2%	—				©O∆	©O∆	—	—	_
L	0–3%	—	—			OO	OO	©O∆	-	_
М	0–5%	—	—	—		OO	OO	©O∆	OO	©ΟΔ
Ρ	0–10%	-	_	-	-	OO	©ΟΔ	00A	00A	00A
Q	0–20%	—	-	-	-	-	00A	00A	00A	00A
R	0–40%	—	—	—	—	—	—	©O∆	OO	00A
S	0–50%	—	—	—	_	-		_	OO	©ΟΔ
Т	0–70%	_	_	_	_	_	_	_	_	00A
U	0–100%	—	_	-	_	—	-	_	-	©ΟΔ

 $\bigcirc:$ CO analyzer measurable range $\land:$ CH4 analyzer measurable range $\bigstar:$ NO analyzer measurable range

T03-2.ai

©:CO₂ analyzer measurable range □:SO₂ analyzer measurable range

Table 2. Two-component analyzer (NO and SO₂)

			2nd comp	onent (SO2),	1st range						
1	st o	component	А	В	С	D	W	E	F	G	Н
1)	10),1st range	0-50ppm	0-100ppm	0-200ppm	0-250ppm	0-300ppm	0-500ppm	0-1000ppm	0-2000ppm	0-5000ppm
	А	0-50ppm	O*1	O*2	O*2	O*2	O*2	O*2	O*2	O*2	-
	в	0-100ppm	O*3	O*4	O*4	O*4	O*4	O*4	O*4	O*4	-
	С	0-200ppm	O*3	O*4	O*5	O*5	O*5	O*5	O*5	O*5	O*5
NO	D	0-250ppm	O*3	O*4	O*5	O*5	O*5	O*5	O*5	O*5	O*5
NO	w	0-300ppm	O*3	O*4	O*5	O*5	O*5	O*5	O*5	O*5	O*5
	Е	0-500ppm	O*3	O*4	O*5	O*5	O*5	O*5	O*5	O*5	O*5
	F	0-1000ppm	O*3	O*4	O*5	O*5	O*5	O*5	O*5	O*5	O*5
	G	0-2000ppm	O*3	O*4	O*5	O*5	O*5	O*5	O*5	O*5	O*5
	н	0-5000ppm	I	I	O*5	O*5	O*5	O*5	O*5	O*5	O*5
	٠D	ouble compone	nts measura	ble range. 1s	st component	t: NO. 2nd c	omponent : S	SO2			T04.EP

O: Double components measurable range. 1st component ; NO, 2nd component ; SO2.

1st range (low range) must meet the combination in above table

*1. 2nd range of both NO and SO₂ measurements are available up to 1000 ppm.

*2. 2nd range of NO and SO₂ measurements are available up to 1000 ppm and 2000 ppm, respectively.

*3. 2nd range of NO and SO₂ measurements are available up to 2000 ppm and 1000 ppm, respectively.

*4. 2nd range of both NO and SO2 are available up to 2000 ppm.

*5. 2nd range of both NO and SO2 are available up to 5000 ppm.

Table 3. Two-component analyzer (NO and CO)

Both NO and CO analyzer must meet the range in Table 1; Single component analyzer.

Table 4. Two-component analyzer (CO₂ and CO)

		2nd compo	onent (CO), 1s	t range 🛛 —	•	CO					
1	st component	A	В	С	D	w	E	F	G	Н	J
ļ (CO ₂),1st range	0-50ppm	0-100ppm	0-200ppm	0-250ppm	0-300ppm	0-500ppm	0-1000ppm	0-2000ppm	0-5000ppm	0-1%
	A 0-50ppm	0	0	0							
	B 0-100ppm	0	0	0	0	0	0				
	C 0-200ppm	0	0	0	0	0	0				
	D 0-250ppm						0				
	W 0-300ppm						0				
CO ₂	E 0-500ppm						0	0			
	F 0-1000ppm							0			
	G 0{2000ppm		□ × 2.5	□ × 2.5	□ × 2.5	□ × 2.5	□×5	□ × 10	□ × 10	0	0
	H 0-5000ppm		□ × 1	□ × 1	□ × 1	□ × 1	□ × 2	□×4	□×4	0	0
	J 0-1%						□×1	□×2	□×2	□ × 10	0
	K 0-2%							□ × 1	□ × 1	□×5	□ × 10
	L 0-5%									□×2	□ × 5
	M 0-10%	□×2	□ × 2	□×2	□×2	□×2	□ × 2	$\Delta \times 2 \times 10$	$\Delta \times 2 \times 5$	□×2	□×5
	N 0-20%	□ × 1	□ × 1	□ × 1	$\Box \times 1$	□ × 1	□ × 1	$\Delta \times 1 \times 10$	$\triangle \times 1 \times 5$	□ × 1	□ × 2.5

 $\bigcirc \square \land$: Double components measurable. 1st component : CO₂. 2nd component : CO.

IR400tble ai

Note: 1st range (low range) must meet the combination in above table. (For 0-200 ppm range, measurement is available up to 25 times.) 2nd range,

) is specified; both CO₂ and CO measurements are available up to 20 times of the 1st range.

is specified; CO measurement is available up to 20 times of the 1st range.

CO2 measurement is available up to the ratio written after the mark.

 \triangle is specified; both CO₂ and CO measurements are available up to ratio written after the \triangle mark.

The ratio, first value is for CO₂, second value is for CO.

example: $\triangle \times 2 \times 5$ means, 2nd range of CO₂ is available up to double of 1st range, 2nd range of CO is available up to 5 times of 1st range. ×1 means only 1st range.

Table 5. Three-component analyzer (NO + SO₂ + CO)

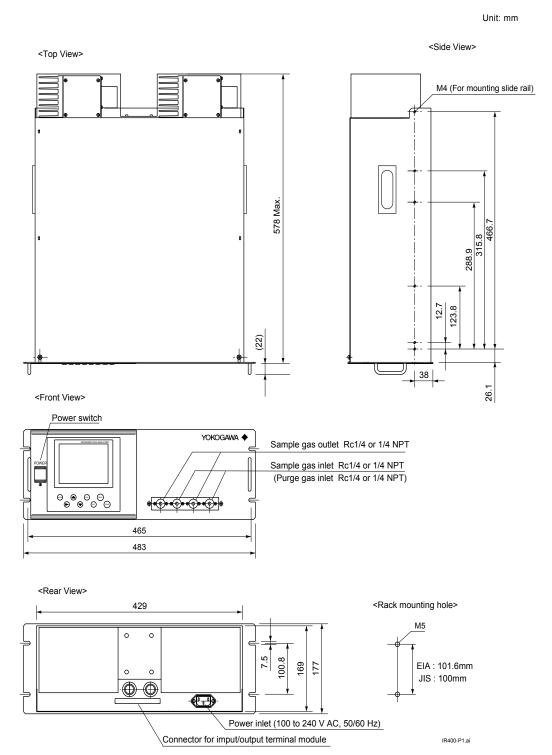
See Table 2 for NO + SO₂ measurement of three-component analyzer (NO + SO₂ + CO). See Table 1 for CO measurement.

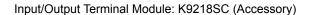
Table 6. Four-component analyzer (NO + SO₂ + CO₂ + CO)

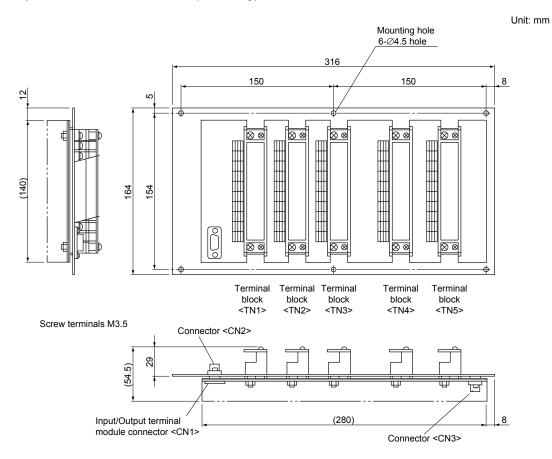
See Table 2 for NO + SO₂ measurement and Table 4 for CO₂ + CO measurement.

Table 7. O2 analyzer

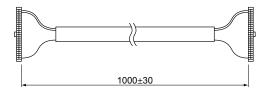
\sim	2nd range	2	3	
1st	range	0-10%	0-25%	
1	0-5%	OΔ	OΔ	1
2	0-10%	I	OΔ	
3	0-25%	-	OΔ	T07.EPS

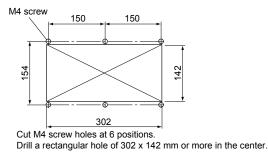

○: Built-in O2 analyzer measurable range


 Δ : External zirconia type O₂ analyzer (in this case, Yokogawa's ZX8D) measurable range

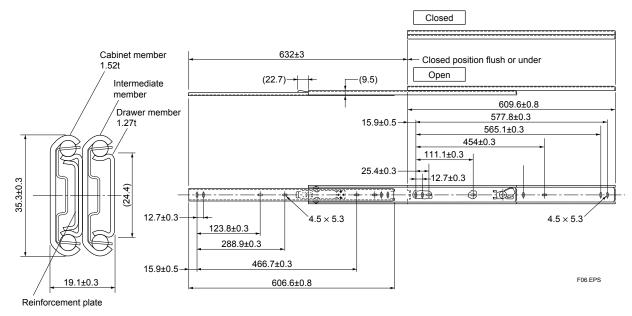

*O2 analyzer is selectable independently of combination with other components.

EXTERNAL DIMENSIONS


Analyzer Main Unit



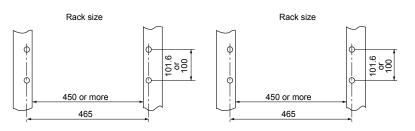
Cable for Connecting Input/Output Terminal: K9218SD (Accessory)

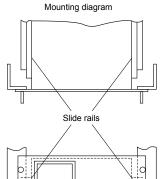

Dimensions for Mounting Input/Output Terminal Module

F05.ai

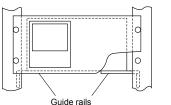
EXTERNAL DIMENSIONS OF ACCESSORY SLIDE RAIL

Model: 305A-24/Accuride International Inc.


19-inch rack mounting method:


The instrument weight should be supported at the bottom of the unit (or the side of the unit when mounted with the slide rails).


For easy maintenance, it is recommended to select the method to allow withdrawing along the slide rail.


Slide rail mounted type

Guide rail mounted type

For the guide rail mounted type, a maintenance space (200 mm or more) should be provided on top of the main unit.

F07.a

Unit: mm

EXTERNAL CONNECTION DIAGRAM

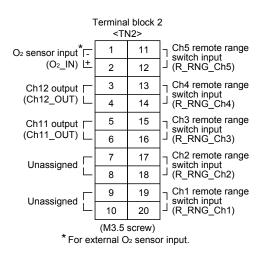
Unassigned

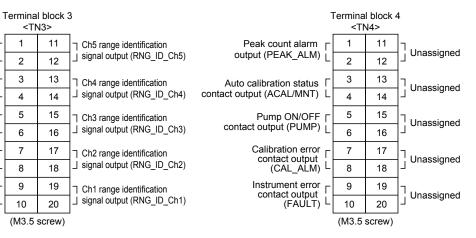
Unassigned

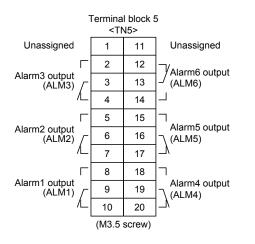
(R HOLD) L

Remote hold input

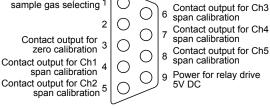
Average value reset Г

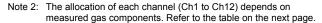

input (RESET) L


remote start


Auto calibration

input (R_CAL)





Connector

<D-sub 9P>

Note 1: Unassigned terminals are used for internal connection. So they should not be used as repeating terminals either.

F08.EPS

Table 8. Measurable Components and Their Corresponding Channel Numbers

Suffix	/Option Code						Outpu	ut and Corre	sponding Ch	nannel				
Measurable component	O2 analyzer	O2 correction	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8	CH9	CH10	CH11	CH12
-A	N	Not specified	NO											
-B	N	Not specified	SO ₂											
-C	N	Not specified	CO ₂											
-D	N	Not specified	со											
-F	N	Not specified	CH₄											
-G	N	Not specified	NO	SO ₂										
-н	N	Not specified	NO	со										
-J	N	Not specified	CO ₂	со										
-K	N	Not specified	NO	SO ₂	со									
-L	N	Not specified	NO	SO ₂	CO ₂	со								
-A	1, 2, 3	/K	NOx	O2	Correct NOx	Correct NOx av.	O2 av.							
-B	1, 2, 3	/K	SO ₂	O2	Correct SO2	Correct SO2 av.	O2 av.							
-D	1, 2, 3	/K	со	O2	Correct CO	Correct CO av.	O2 av.							
-F	1, 2, 3	/K	CH₄	O2	O2 av.									
-G	1, 2, 3	/K	NOx	SO ₂	O2	Correct NOx av.	Correct SO2	Correct NOx av	Correct SO2 av.	O2 av.				
-н	1, 2, 3	/K	NOx	со	O2	Correct NOx	Correct CO	Correct NOx av	Correct CO av.	O2 av.				
-J	1, 2, 3	/K	CO ₂	со	O2	Correct CO2 av.	Correct CO av.	O2 av.						
-K	1, 2, 3	/K	NOx	SO ₂	со	O2	Correct NOx	Correct SO ₂	Correct CO	Correct NOx av.	Correct SO2 av.	Correct CO av.	O2 av.	
-L	1, 2, 3	/K	NOx	SO ₂	CO ₂	со	O2	Correct NOx	Correct SO2	Correct CO	Correct NOx av.	Correct SO2 av.	Correct CO av.	O2 av.
-D	1, 2, 3	except /K	со	O2										
-H	1, 2, 3	except /K	NO	со	O2									
-J	1, 2, 3	except /K	CO ₂	со	O2									
-К	1, 2, 3	except /K	NO	SO ₂	со	O2								
-L	1, 2, 3	except /K	NO	SO ₂	CO ₂	со	O2							

No measurement in this area is displayed as NOx.
 Notes: Peak count alarm is a contact out put.
 "Correct XX" means an instantaneous XX value after O₂ correction, "Correct XX av." an average XX value after O₂ correction, and O₂ av." an average O₂ value.

STANDARD ACCESSORIES

Name	Part Number	Description	Qty
Power cable	K9218SA	standard inlet type (2.5 m)	1
Fuse	K9218SB	replacement fuse (250 V AC, 3.15 A, delay type) ×1	2
Input/output terminal module	K9218SC	External terminal module	1
Cable	K9218SD	Connection cable between main unit and input/output terminal module (1 m)	1
Slide rail	K9218SE	Slide rail	2
	•	T09.	EPS

Note: Quantity in this is number of accessories supplied as standard. For instance, two K9218SE parts, i.e., two slide rails, are supplied as standard. When ordering separately, the required number of should be considered.

Dedicated Zirconia O2 Sensor (to be purchased separately)

For O₂ correction, the IR400 can accept linearized 0 to 1 V DC signal coming from an analyzer calibrated to 0 to 25% O2 of full scale. Dedicated zirconia O2 sensor, Model ZX8D, is available from Yokogawa.

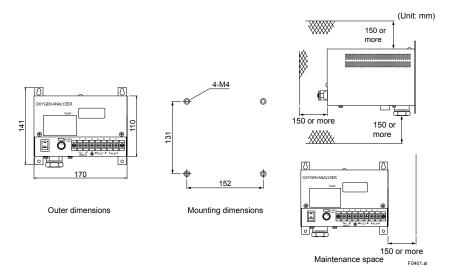
Measuring method: Zirconia system

Measurable component and measuring range:

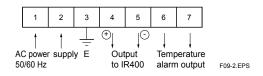
Measurable component	Minimum range	Maximum range
Oxygen (O2)	0-5 vol%	0-25 vol%
		T11.EPS

Repeatability: Within ± 0.5% of full scale Within ± 1% of full scale Linearity: Zero drift: Within ± 1% of full scale/week Span drift: Within ± 2% of full scale/week Response time: Approx. 20 seconds (for 90% response) Measured gas flow rate: 0.5 ± 0.25 L/min

Remark:	The Zirconia system, due to its principle,
	may produce a measuring error due to
	relative concentration versus the com-
	bustible O ₂ gas concentration. Also, a
	corrosive gas (SO ₂ of 250 ppm or more,
Can inlat/out	etc.) may affect the life of the sensor.
	tlet size: Rc1/4 y:90 to 126 V AC or 200 to 240 V AC,
Fower suppr	50/60 Hz
Enclosure:	
Indication:	
	alarm output:
•	Contact output 1a contact,
	Contact capacity 220 V AC, 1 A
	(resistive load)
	EMC conforming standards:
	n altitude: 2000 m or less
	degree; 2 (Note)
	n category; II (Note) e: Installation category, called over-
NOLE	voltage category, specifies impulse with
	standing voltage. Category II is for electrical
	equipment. Pollution degree indicates
	the degree of existence of solid, liquid,
	gas or other inclusions which reduce
	dielectric strength.
	Degree 2 is the nomal indoor environment.
Safety;	EN61010-1
EMC ;	EN61326-1 Class A, Table 2 (For use in
	industrial locations), EN61326-2-3,
	EN61000-3-2, EN61000-3-3
	EMC Regulatory Arrangement in Australia and New Zealand
Note	: The product mounted in a steel enclosure
NOLE	conforms to the requirements of EMC
	directive.


CAUTION

The instrument is a Class A product, and it is designed for use in the industrial environment. Please use this instrument in the industrial environment only.


Dimensions (H × W × D): 140 × 170 × 190 mm Weight: Approx. 3 kg Finish color: Munsell 5Y 7/1

Model	Suffix	code	Option code	Description				
ZX8D						Dedicated zirconia O2 sensor		
Power supply	-5 -3			90-126 V AC, 50/60 Hz 200-240 V AC, 50/60 Hz				
Style co	code *C *D			Non-CE conformity CE conformity				
				T13.EPS				

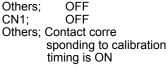
External Dimensions of ZX8D

External Connection Diagram

Dedicated relay board (Option code: /R)

This relay board receives signals from connector CN3 of the IR400 I/O terminal module and activates the calibration solenoid valve directly.

 Relay contact : 1 normally closed contact, contact capacity; 250 V AC/2 A (resistive load)

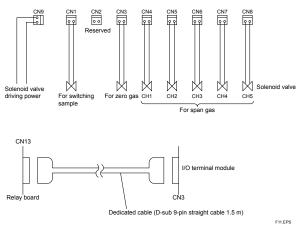

Part Numbers

Item	Part No.	Description	Qty
Relay board	K9218SF	For external contact point	1
Cable	K9218SG	For relay board	1
		τ1	

Contact action

• During measurement: CN1;

During calibration:


ON

Recommended Connector

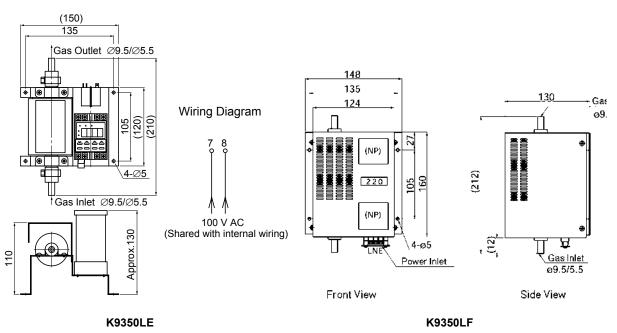
 CN1 to CN9: Housing; VHR-2N (Japan Solderless Terminals (JST)) Contact; SVH-21T-1.1 (Japan Solderless Terminals (JST))

External Dimensions

Connections

NO₂/NO Converter

Part number: K9350LE (Non-CE conformity) K9350LF (CE conformity)						
Mounting: Indoor surface mounting						
larget Ga	Target Gases: General boiler exhaust gas,					
	atmosphere					
Catalyst:	Amount; 2 cm ³					
	Replacement cycle; Approx. 8 months					
	(at flow rate of 0.5 L/min with 5%O ₂ ,					
	10 ppm NO ₂)					
	Temperature set-point; 220 ±10°C					
	(Sensing tip: K thermocouple)					
Wetted ma	aterials: Ceramic, Viton, glass filter,					
SUS316						
Conversion efficiency: 90% or higher, conforms to						
JIS						
Gas Flow	Rate: 0.5 L/min					
	emperature: -5 to 45°C					
Power Su	Power Supply:100 V AC, 50/60 Hz (K9350LE)					
	100 to 240 V AC, 50/60 Hz (K9350LF)					
Weight:	Approx. 1.1 kg (K9350LE)					
	Approx. 1.2 kg (K9350LF)					
Sample ga	as requirements:					
	Dust/drain removed, gas temperature at					
	150°C or less					
•						


One-year-Use Spare Parts

Item	Part No.	Qty
Catalyst for NO2/NO converter	K9350LP	2
Glass wool for NO2/NO converter	K9350LQ	2
Fitting for NO2/NO converter K935		2
		T15 ene

Safety conforming standards:				
Installation altitude: 2000 m or less				
Pollution degree; 2 (Note)				
Installation category; II (Note)				
Note: Installation category, called over-				
voltage category, specifies impulse with				
standing voltage. Category II is for electrical				
equipment. Pollution degree indicates				
the degree of existence of solid, liquid,				
gas or other inclusions which reduce				
dielectric strength.				
Degree 2 is the nomal indoor environment.				
Safety; EN61010-1				
EMC ; EN61326-1 Class A, Table 2 (For use				
in industrial locations), EN61326-2-3,				
EN61000-3-2, EN61000-3-3				
EMC Regulatory Arrangement in				
Australia and New Zealand				
Note: The product mounted in a steel enclosure				
conforms to the requirements of EMC				
directive.				

The instrument is a Class A product, and it is designed for use in the industrial environment. Please use this instrument in the industrial environment only.

Unit: mm

External Dimensions

Inquiry Sheet for IR400 NDIR Type Infrared Gas Analyzer

Place a checkmark ✓ in the appropriate box and fill in the specific information in the blanks for your reference.

1. General Information

Delivery destination:		
Section:	(Phone No.)
Measurement location:		
	Section:	Section: (Phone No.

Purpose:
Indication reading,
Recording,
Alarm,
Control

2. Requirements

Measurable component:

1st	2nd	3rd	4th
NO			
SO ₂			
CO ₂			
СО			
CH₄			
NO	SO ₂		
NO	CO		
CO ₂	CO		
NO	SO ₂	СО	
NO	SO ₂	CO ₂	СО

O₂ Analyzer: Uithout O₂ analyzer External zirconia type sensor (use ZX8D) Style C (Non-CE conformity) Style D (CE conformity) External O₂ analyzer Built-in paramagnetic type O₂ sensor

NO₂/NO Converter With NO₂/NO converter K9350LE (non-CE conformity) K9350LF (CE conformity) Without NO₂/NO converter

Range:

kange:			
1st component, 1st range range	1st component, 2nd range	2nd component, 1st range	2nd component, 2nd
□ 0 – 20 ppm	🗆 0 – 50 ppm	🗆 0 – 50 ppm	🗆 0 – 100 ppm
🗆 0 – 50 ppm	🗆 0 – 100 ppm	🗆 0 – 100ppm	🗆 0 – 200 ppm
🗆 0 – 100 ppm	🗆 0 – 200 ppm	🗆 0 – 200 ppm	🗆 0 – 250 ppm
🗆 0 – 200 ppm	🗆 0 – 250 ppm	🗆 0 – 250 ppm	🗆 0 – 500 ppm
🗆 0 – 250 ppm	🗆 0 – 500 ppm	🗆 0 – 500 ppm	🗆 0 – 1000 ppm
🗆 0 – 500 ppm	🗆 0 – 1000 ppm	🗆 0 – 1000 ppm	🗆 0 – 2000 ppm
🗆 0 – 1000 ppm	🗆 0 – 2000 ppm	🗆 0 – 2000 ppm	🗆 0 – 5000 ppm
🗆 0 – 2000 ppm	🗆 0 – 5000 ppm	🗆 0 – 5000 ppm	□ 0 – 1%
🗆 0 – 5000 ppm	□ 0 – 1%	□ 0 – 1%	□ 0 – 2%
□ 0 – 1%	□ 0 – 2%	□ 0 – 2%	□ 0 – 3%
□ 0 – 2%	□ 0 – 3%	□ 0 – 3%	□ 0 – 5%
□ 0 – 3%	□ 0 – 5%	□ 0 – 5%	□ 0 – 10%
□ 0 – 5%	□ 0 – 10%	□ 0 – 10%	□ 0 – 20%
□ 0 – 10%	□ 0 – 20%	□ 0 – 20%	□ 0 - 40%
□ 0 – 20%	□ 0 - 40%	□ 0 - 40%	□ 0 – 50%
□ 0 – 40%	□ 0 – 50%	□ 0 – 50%	□ 0 – 70%
□ 0 – 50%	□ 0 – 70%	□ 0 – 70%	□ 0 – 100%
□ 0 – 70%	□ 0 – 100%	□ 0 – 100%	Not available
□ 0 – 100%	Not available	Not available	

3rd component, 1st range	3rd component, 2nd range	4th component, 1st range	4th component, 2nd range
□ 0 – 50 ppm	□ 0 – 100 ppm	□ 0 – 50 ppm	□ 0 – 100 ppm
🗆 0 – 100 ppm	🗆 0 – 200 ppm	🗆 0 – 100 ppm	🗆 0 – 200 ppm
🗆 0 – 200 ppm	🗆 0 – 250 ppm	🗆 0 – 200 ppm	🗆 0 – 250 ppm
🗆 0 – 250 ppm	🗆 0 – 500 ppm	🗆 0 – 250 ppm	🗆 0 – 500 ppm
🗆 0 – 500 ppm	🗆 0 – 1000 ppm	🗆 0 – 500 ppm	🗆 0 – 1000 ppm
🗆 0 – 1000 ppm	🗆 0 – 2000 ppm	🗆 0 – 1000 ppm	🗆 0 – 2000 ppm
🗆 0 – 2000 ppm	🗆 0 – 5000 ppm	🗆 0 – 2000 ppm	🗆 0 – 5000 ppm
🗆 0 – 5000 ppm	□ 0 – 1%	🗆 0 – 5000 ppm	□ 0 – 1%
□ 0 – 1%	□ 0 – 2%	□ 0 – 1%	□ 0 – 2%
□ 0 – 2%	□ 0 – 3%	□ 0 – 2%	□ 0 – 3%
□ 0 – 3%	□ 0 – 5%	□ 0 – 3%	□ 0 – 5%
□ 0 – 5%	□ 0 – 10%	□ 0 – 5%	□ 0 – 10%
□ 0 – 10%	□ 0 – 20%	□ 0 – 10%	□ 0 – 20%
□ 0 – 20%	□ 0 - 40%	□ 0 – 20%	□ 0 – 40%
□ 0 - 40%	□ 0 – 50%	□ 0 – 40%	□ 0 – 50%
□ 0 – 50%	□ 0 – 70%	□ 0 – 50%	□ 0 – 70%
□ 0 – 70%	□ 0 – 100%	□ 0 – 70%	□ 0 – 100%
□ 0 – 100%	Not available	□ 0 – 100%	Not available
Not available		Not available	
O ₂ Analyzer, 1st range	O2 Analyzer, 2nd range		
□ 0 – 5%	□ 0 – 10%		
□ 0 – 10%	□ 0 – 25%		
□ 0 – 25%	Not available		
Not available			
	$\Box 4 - 20 \text{ mA DC}$ $\Box 0 - 1$	V DC □ RS-232C	
O ₂ correction and O ₂ average: Peak count alarm:	□ Yes □ No □ Yes □ No		
	□ Yes □ No		
Sample gas conditions			
	il, \Box Coal, \Box Refuse, \Box Othe		1° 01
(1) Temperature:(2) Pressure:	to to	, Normal temperature , Normal pressure	[°C] [MPa]
(3) Humidity:	10	[vol%]	[ivii a]
(4) Dust:		[vor/0] [mg/Nm³]	
(5) Corrosive das: \Box Yes			

Composition (Detailed composition of sample gas should be provided. This is important for the purpose of knowing the effect of interference gases)

🗆 No

Concentration range		
to	□ %	🗆 ppm
to	□ %	□ ppm
to	□ %	🗆 ppm
to	□ %	□ ppm
to	□ %	🗆 ppm
to	□ %	□ ppm
to	□ %	□ ppm
to	□ %	□ ppm
to	□ %	🗆 ppm
to	□ %	□ ppm
	to to	to \ % to \ %

□ Yes_

3.

(4) Dust:(5) Corrosive gas: