

PowerProx

THE NEW HOME OF THE SENSING RANGE

SICK

Sensor Intelligence.

PowerProx： THE NEW STANDARD FOR RELIABLE DETECTION WITH AN EXTENDED SENSING RANGE

The new standard for reliable de－ tection with an extended sensing range can＇t be measured with a conventional yard stick．After all， with sensing ranges from 5 cm to 4 m ，no object goes undetected by the PowerProx MultiTask photoelec－ tric sensors．In this sensor，SICK has packed all the advantages of time－of－flight technology into the world＇s smallest housing．And we increased the detection speed： thanks to PowerProx，now even ob－ jects being conveyed at high speed， small and flat objects，and jet black and shiny objects can be reliably detected over a longer distance．The photoelectric sensors also provide stable detection results over a large detection angle and are immune to ambient light．In addition，many variants are available with analog output，thereby delivering precise measured values for different posi－ tioning tasks．The ideal solution：the product family PowerProx combines sensing range，speed，precision， reliability and a small housing size under one roof．

PowerProx：you can see
the film at
www．sick．com／PowerProx

Coses)
 0

PowerProx: EVERYTHING UNDER ONE ROOF

The PowerProx MultiTask photoelectric sensors set standards, including when it comes to choice and commissioning - not only do they offer the best solution, they always provide the right solution.

THE NEW STANDARD: CUSTOMIZED FOR YOUR APPLICATION

Abstract

Depending on the application, there are also specific requirements placed on the sensors. PowerProx offers tailor-made solutions for all requirements:

The smallest design and largest sensing range: presence monitoring of objects in grippers

Grippers are always in motion when picking up objects, therefore sensors attached to the grippers must be as small and light as possible. The PowerProx Micro has the currently smallest size in the world with a sensing range of 800 mm : the ideal solution for use in grippers. The sensor can be set easily via the single teach-in button.

Extended sensing range: Occupied bay and clearance detection

 Thanks to its extended sensing range of up to 3.8 m and two separate, adjustable switching points and analog output, the PowerProx Distance is the ideal solution for occupied bay and clearance detection, for palletization, and collision protection. Up to eight switching points can be defined with IO-Link, which means that the occupation status of up to eight bays can be checked. The PowerProx Distance is immune to background reflections, e.g., from steel shelf beams. Even mutual interference between two sensors is eliminated. The PowerProx Small and Micro are suitable for use in the tightest of spaces - and operate reliably for sensing ranges up to 2.5 m and 0.8 m .
High speed: Rapid counting and precise edge detection

When it comes to processes, such as counting at high speed in the packaging industry or precise edge detection in the wood industry, the PowerProx Speed is the right choice: The short response time, the high switching frequency, and the high-precision laser beam enable precise edge detection on wooden boards, for example. What's more, the PowerProx Speed also offers smart sensor functions, such as a time stamp. The PowerProx Speed also reliably detects even very shiny objects at a large detection angle. If the background is not in close proximity to the object, then the PowerProx Small is ideal and, as it is even smaller, it offers more flexibility in terms of machine design.

Maximum precision: Quality control by detecting the smallest of objects and object properties.
Top results when detecting and measuring the smallest of objects thanks to small hysteresis, small minimum distance between object and background as well as high repeatability: the PowerProx Precision really comes into its own during quality control, in the automotive and part supplier industries, for example. The photoelectric sensor reliably detects even the smallest objects, gaps, and recesses from far away. It handles changing materials and very shiny surfaces with ease, even in front of shiny or reflective backgrounds.

Maximum precision: Checking the pick-up point and collision awareness PowerProx Precision reliably detects small and flat objects as well, no matter what the surface finish: A crucial requirement for use in industrial handling and assembly. With up to two adjustable switching points or up to eight adjustable switching points in the IO-Link version as well as analog output, several robot pick-up points, for example, can be reliably checked. PowerProx Precision provides precise detection at sensing ranges from 5 cm to 1.8 m and can be installed wherever desired.

Extended sensing range: Protection for doors and gates

When you need to protect doors and gates, an extended sensing range is a must. Photoelectric retro-reflective sensors and through-beam photoelectric sensors always require a reflector or a receiver system. while PowerProx operates according to the scanning principle, with reflectors and receivers not being required. PowerProx With its extended sensing range of up to 3.8 m and high ambient light immunity, PowerProx Distance is ideal for protecting large doors and gates. For smaller distances to be measured, for example access monitoring at subway stations, the space-saving PowerProx Micro offers new possibilities when designing access zones.

Two switching points: Monitoring level, slack, stack height, or roll thickness Many variants of the PowerProx product family are also available with two adjustable switching points. this means that control tasks, such as slack control in the printing industry, the tire industry, or during sheet steel processing, can be carried out efficiently and easily. Depending on additional requirements relating to speed, precision, sensing range, or size, different PowerProx photoelectric sensor variants are the ideal choice. The versions with IO-Link and up to eight switching points or the versions with analog output are well-suited if a finer application resolution is required.

INSTALLED AS STANDARD: THE INNOVATIVE POWER OF SICK

It simply can't get any more powerful than this: not only does the PowerProx pack time-of-flight technology into the world's smallest housing for the first time, its improved optics and electronics, high level of ruggedness, and full smart sensor functions also offer a range of advantages, including:

Outstanding detection properties over large sensing ranges, high switching frequencies and small minimum distance between object and background

Time-of-flight technology in the smallest housing

Improved optics and beam paths deliver greater performance and precision

The latest laser technology for a precise, highly visible light spot (red light version) No risk to the eyes thanks to laser class 1

Greater precision due to highly accurate receiver elements and rapid signal processing

(1) High level of robustness and maximum flexibility in the machine design

- VISTAL ${ }^{\circledR}$ housing ("Distance", "Speed", "Precision", and corresponding "Shiny" variants)
- Smallest housing with this performance level ("Micro" variant)
(4) Analog output
- Variants with analog output available
- Output of the measured distance value via current and voltage output
(2) Easy commissioning, easy replacement
- No complicated sensor programming required
- A setting element and an LED is assigned to each switching threshold
- Highly visible light spot or alignment accessory simplifies alignment

(5) "Shiny" variants available

- For detection tasks in which large amounts of emitted light from shiny objects are reflected back to the sensor
(3) Intelligent additional functions, which provide extra options
- The distance value can be read out in mm via IO-Link, and up to eight switching points can be defined ("Distance", "Speed", "Precision" and corresponding "Shiny" variants)
- Configuration of various sensor functions via the display ("Small" variant)

RELIABLE DETECTION WITH UNRIVALED RANGE

Additional information
Detailed technical data 11
Ordering information 13
Dimensional drawings 14
Connection diagram 15
Sensing range 16
Light spot size 16
Reproducibility 16

Product description

PowerProx Distance provides reliable detection up to a sensing range of 3.8 m . This enables PowerProx Distance to measure large areas, e.g., multi-deep bays in storage and conveyor systems. The small PowerProx Distance housing combines time-of-flight technology, laser class 1 (i.e., no danger to eyes), outstanding optics, and fast signal processing. The MultiTask photoelectric sensor

At a glance

- Time-of-flight technology, laser class 1
- Sensing range for object detection: 5 cm to 3.8 m
- Switching frequency: 100 Hz
- Minimum distance between the object and background: 8 ... 24 mm

Your benefits

- Measures large areas up to a sensing range of 3.8 m , e.g., multi-deep bays in storage and conveyor systems
- Reliable object detection, e.g., even with shiny or jet-black surfaces and background reflections
- Highly visible light spot simplifies alignment of the photoelectric proximity sensor
is adjusted via potentiometer or teach-in button. There are versions available with either one or two separately adjustable switching thresholds with analog output or IO-Link, depending on the application. IO-Link can be used to define up to eight switching points and to make use of the smart sensor functions. The VISTAL ${ }^{\text {TM }}$ housing ensures the device is sufficiently rugged.
- VISTAL ${ }^{\text {TM }}$ housing
- 1 or 2 switching points which can be adjusted separately
- Analog output
- IO-Link available as an option (distance value, 8 switching points, smart sensor functions)
- Precise, simple adjustment with potentiometer or teach-in button
- Eye-safe thanks to laser class 1
- High levels of availability and durability. Rugged even when subjected to high mechanical loads thanks to VISTAL ${ }^{\text {TM }}$ housing.
- Small housing offers great flexibility in terms of machine design
- IO-Link extends functionality
\rightarrow www.sick.com/PowerProx
For more information, simply enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples, and much more.

Detailed technical data

Features

Sensor principle	Photoelectric proximity sensor
Detection principle	Background suppression
Dimensions (Wx H x D)	$20 \mathrm{~mm} \times 49.6 \mathrm{~mm} \times 44.2 \mathrm{~mm}$
Housing design (light emission)	Rectangular
Sensing range max. ${ }^{1)}$	$50 \mathrm{~mm} . .3,800 \mathrm{~mm}$
Sensing range ${ }^{2)}$	100 mm ... 3,800 mm
Distance value-measuring range ${ }^{1)}$	$\begin{aligned} & 50 \mathrm{~mm} \ldots 3,800 \mathrm{~mm} \\ & 100 \mathrm{~mm} . . .3,800 \mathrm{~mm} \\ & \text { (depending on type) } \end{aligned}$
Distance value-resolution	1 mm
Distance value-repeatability ${ }^{\text {3) }}{ }^{4)}$ 5)	1,1 mm ... 3,0 mm
Distance value-accuracy	Typ. $\pm 15 \mathrm{~mm}$
Type of light	Visible red light
Light source ${ }^{6}$	Laser
Light spot size (distance)	Ø $18 \mathrm{~mm}(3,800 \mathrm{~mm})$
Wave length	658 nm
Laser class	1 (IEC 60825-1 / CDRH 21 CFR 1040.10 \& 1040.11)
Adjustment	Potentiometer, 4 turns (1 x) Potentiometer, 4 turns (2 x) Single teach-in button (1 x) Single teach-in button (2 x) IO-Link (depending on type)

${ }^{1)}$ Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).
${ }^{2)}$ Adjustable
${ }^{3)}$ Equivalent to 1σ.
${ }^{4}$) See characteristic curves repeatability.
${ }^{5}$) 6%... 90% remission.
${ }^{6)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T} u=+25^{\circ} \mathrm{C}$.

Mechanics/electronics

Supply voltage	
Ripple ${ }^{4)}$	$\leq 5 \mathrm{~V}_{\mathrm{pp}}$
Power consumption ${ }^{5)}$	$\leq 70 \mathrm{~mA}$
Output type ${ }^{\text {6 7) }}$ 7)	PUSH/PULL, PNP, NPN
Number of switching outputs	$\begin{aligned} & 2(\mathrm{Q} 1, \mathrm{Q} 2)^{6)} \\ & 2(\mathrm{Q}, / \mathrm{Q})^{7} \\ & 1(\mathrm{Q} 1)^{8)} \\ & \text { (depending on type) } \end{aligned}$
Switching mode	Light switching ${ }^{6)}$ 8) Light/dark switching ${ }^{7 \text { 7 }}$ (depending on type)
Output current $\mathrm{I}_{\text {max }}$.	$\leq 100 \mathrm{~mA}$ / $\leq 50 \mathrm{~mA}$ (depending on type)
Response time ${ }^{9}$	$\leq 5 \mathrm{~ms}$
Switching frequency ${ }^{10}$	100 Hz
Analog output	$4 \mathrm{~mA} \ldots 20 \mathrm{~mA}(\leq 450 \Omega)$ / 0 V ... $10 \mathrm{~V}(\geq 50 \mathrm{k} \Omega)$ / switchable
Resolution of analog output	12 bit

$\left.\begin{array}{|l|l|}\hline \text { Output time } & \leq 5 \mathrm{~ms} \\ \hline \text { Input } & \begin{array}{l}\mathrm{MF}_{\text {in }}=\text { multifunctional input programmable } \\ \text { L/D }=\text { light/dark switching }\end{array} \\ \text { Sender off } \\ \text { (depending on type) }\end{array}\right\}$
${ }^{1)}$ Limit values. Operated in short-circuit protected network: max. 8 A .
${ }^{2)} \mathrm{V}_{\mathrm{s}} \mathrm{min}$ at IO-Link operation $=18 \mathrm{~V}$.
${ }^{3)} \mathrm{Vs}$ min when using the voltage output $=13 \mathrm{~V}$.
${ }^{4)}$ May not exceed or fall below U_{v} tolerances.
${ }^{5}$) Without load. At $\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$.
${ }^{6}$) $\mathrm{Q} 1, \mathrm{Q} 2=2$ switching thresholds, light switching.
${ }^{7}$) $\mathrm{Q}, / \mathrm{Q}=1$ switching threshold, light/dark switching (complementary).
${ }^{8)}$ Q1 $=1$ switching threshold, light switching.
${ }^{9}$) Signal transit time with resistive load.
${ }^{10)}$ With light/dark ratio 1:1.
${ }^{11)}$ Do not bend below $0{ }^{\circ} \mathrm{C}$.
${ }^{12)} \mathrm{A}=\mathrm{V}_{\mathrm{s}}$ connections reverse-polarity protected.
${ }^{13)} B=$ inputs and output reverse-polarity protected.
${ }^{14)} \mathrm{C}=$ interference suppression.
${ }^{15)}$ As of $\mathrm{T}_{\mathrm{a}}=45{ }^{\circ} \mathrm{C}$, a max. load current $\mathrm{I}_{\max }=50 \mathrm{~mA}$ is permitted.
${ }^{16)}$ For Vs $\leq 24 \mathrm{~V}$. When $\mathrm{Tu}=45^{\circ} \mathrm{C}$ or above, a maximum load resistance of $300 \Omega \ldots 450 \Omega$ is permitted on QA.
${ }^{\text {17) }}$ Below $\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ a warm-up time is required.

Fieldbus, industrial network

Fieldbus integration	IO-Link V1.1
Mode	COM $2(38,4$ kBaud $)$
Cycle time	5 ms
Process data length	32 Bit
Process data structure	Bit $0=$ switching signal Q_{01} Bit $1=$ switching signal Qo2
	Bit $2 \ldots 8=$ BDC $2 \ldots 8$
	Bit $9 \ldots 15=$ empty Bit $16 \ldots 31=$ distance value
	8 switching points for distance to object, of which 2 can be inverted, 1 switching point as switching window or configurable with hysteresis. Multifunctional input: sender off, external teach, inactive
Additional features	

Ordering information
PowerProx Distance, switching output

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: $50 \mathrm{~mm} . . .3,800 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {Max: }}: \leq 100 \mathrm{~mA}$

Number of switching outputs	Switching mode	Adjustment	Input	Connection	Connection diagram	Type	Part no.
$2(\mathrm{Q}, / \mathrm{Q})^{1)}$	Light/dark switching ${ }^{1)}$	Single teach-in button (1 x)	Sender off	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-282	WTT12L-B3562	1072640
				Cable, 5 -wire, $2 \mathrm{~m}, \mathrm{PVC}$	cd-283	WTT12L-B1562	1072634
				Male connector M12, 5-pin	cd-282	WTT12L-B2562	1072637
		Potentiometer, 4 turns (1 x)	Sender off	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-282	WTT12L-B3561	1072614
				Cable, 5-wire, 2 m, PVC	cd-283	WTT12L-B1561	1072608
				Male connector M12, 5-pin	cd-282	WTT12L-B2561	1072611
$2(\mathrm{Q} 1, \mathrm{Q} 2){ }^{\text {2 }}$	Light switching ${ }^{2)}$	Single teach-in button (2 x)	L/D = light/ dark switching	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-286	WTT12L-B3567	1072657
				Cable, 5 -wire, 2 m, PVC	cd-287	WTT12L-B1567	1072651
				Male connector M12, 5-pin	cd-286	WTT12L-B2567	1072654
			Sender off	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-284	WTT12L-B3563	1072648
				Cable, 5 -wire, 2 m, PVC	cd-285	WTT12L-B1563	1072643
				Male connector M12, 5-pin	cd-284	WTT12L-B2563	1072645
		Potentiometer, 4 turns (2 x)	$\begin{gathered} \text { L/D = light/ } \\ \text { dark switching } \end{gathered}$	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-286	WTT12L-B3568	1072631
				Cable, 5 -wire, 2 m, PVC	cd-287	WTT12L-B1568	1072625
				Male connector M12, 5-pin	cd-286	WTT12L-B2568	1072628
			Sender off	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-284	WTT12L-B3566	1072622
				Cable, 5 -wire, 2 m, PVC	cd-285	WTT12L-B1566	1072617
				Male connector M12, 5-pin	cd-284	WTT12L-B2566	1072619

${ }^{1)} \mathrm{Q}, / \mathrm{Q}=1$ switching threshold, light/dark switching (complementary).
${ }^{2}$) Q1, Q2 $=2$ switching thresholds, light switching.

PowerProx Distance, analog and switching output

- Supply voltage: 12 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.) (Vs min when using the voltage output = 13 V .)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: $50 \mathrm{~mm} . . .3,800 \mathrm{~mm}$ (Object with 6 ... 90% remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {мах: }}$: $\leq 50 \mathrm{~mA}$
- Analog output: $4 \mathrm{~mA} . . .20 \mathrm{~mA}(\leq 450 \Omega) / 0 \mathrm{~V} . .10 \mathrm{~V}(\geq 50 \mathrm{k} \Omega)$ / switchable
- Distance value-measuring range: $100 \mathrm{~mm} . . .3,800 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)

Number of switching outputs ${ }^{1)}$	Switching mode ${ }^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part $n 0$.
1 (Q1)	Light switching	Single teach-in button (2 x)	Sender off	Male connector M12, 5-pin	cd-375	WTT12L-A2563	1082474

${ }^{1)}$ Q1 $=1$ switching threshold, light switching.

PowerProx Distance, IO-Link

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.) (Vs min at IO-Link operation = 18 V .)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: $50 \mathrm{~mm} . . .3,800 \mathrm{~mm}$ (Object with 6 ... 90% remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {max }}$: $\leq 100 \mathrm{~mA}$
- Distance value-measuring range: $50 \mathrm{~mm} . . .3,800 \mathrm{~mm}$ (Object with 6 ... 90% remission (based on standard white to DIN 5033).)

Number of switching outputs ${ }^{1)}$	Switching mode $^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no.
2 (Q1, Q2)	Light switching	Single teach-in button $(2 x)$ IO-Link	MF $_{\text {in }}=$ multi- functional input programmable	Male connector M12,5-pin	cd-290	WTT12LC-B2563	1072532

${ }^{1}$) Q1, Q2 $=2$ switching thresholds, light switching.

Dimensional drawings (Dimensions in mm (inch))
Analog and switching output

Switching output and IO-Link

(1) Optical axis sender
(2) Optical axis receiver
(3) LED indicator yellow: Status of received light beam (4) LED indicator green: power on
(5) LED indicator yellow: Status of received light beam
(6) Mounting hole, $\varnothing 4.2 \mathrm{~mm}$
(7) Connection
(8) Potentiometer
(9) Single teach-in button

Connection diagram

Cd-282

Cd-287

Cd-283

Cd-284

$$
\begin{aligned}
& \text { Cd-290 }
\end{aligned}
$$

Cd-285

Cd-375

Sensing range

(1) Sensing range on black, 6% remission
(2) Sensing range on white, 90% remission

Reproducibility

[^0]

Light spot size
Radius in mm (inch)

(1) Light spot horizontal
(2) Light spot vertical

RELIABLE DETECTION OF VERY SHINY, DISTANT OBJECTS

Additional information
Detailed technical data 19
Ordering information 21
Dimensional drawings 22
Connection diagram 23
Sensing range 23
Light spot size 23
Reproducibility 23

Product description

The PowerProx Distance Shiny sensor is a variant of the PowerProx Distance MultiTask photoelectric sensor. PowerProx Distance Shiny was specially developed for the detection of shiny objects which reflect a high proportion of the light emitted by the sensor directly to the sensor receiver. Even under these con-

At a glance

- Time-of-flight technology, laser class 1
- Sensing range for object detection: 5 cm . 1.8 m
- Switching frequency: 100 Hz
- Minimum distance between object and background: $9 \mathrm{~mm} . .22 \mathrm{~mm}$

Your benefits

- High measurement accuracy even when the emitted light beam meets very shiny objects (no reflectors) vertically
- More precise detection of object edges arriving from the side
ditions, PowerProx Distance Shiny provides accurate, reliable measurements. Positive side effects: The sensors even detect object edges arriving from the side more precisely and are less sensitive to dust and steam in the ambient air than the standard PowerProx Distance variant.
- VISTAL ${ }^{\circledR}$ housing
- 1 or 2 switching points which can be adjusted separately
- Analog output
- IO-Link (distance value, 8 switching points, smart sensor functions)
- More precise detection of holes in objects
- Better suppression of dust and steam in ambient air

[^1]For more information, simply enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples, and much more.

Detailed technical data

Features

Sensor principle	Photoelectric proximity sensor
Detection principle	Background suppression
Dimensions (W x H x)	$20 \mathrm{~mm} \times 49.6 \mathrm{~mm} \times 44.2 \mathrm{~mm}$
Housing design (light emission)	Rectangular
Sensing range max. ${ }^{1)}$	$50 \mathrm{~mm} . . .1,800 \mathrm{~mm}$
Sensing range ${ }^{2)}$	$100 \mathrm{~mm} . . .1,800 \mathrm{~mm}$
Distance value-measuring range ${ }^{1)}$	$\begin{aligned} & 50 \mathrm{~mm} . . .1,800 \mathrm{~mm} \\ & 100 \mathrm{~mm} . . .1,800 \mathrm{~mm} \\ & \text { (depending on type) } \end{aligned}$
Distance value-resolution	1 mm
Distance value-repeatability ${ }^{3 \text { 3 }}{ }^{4)}$ 5)	1,2 mm ... 3,0 mm
Distance value-accuracy	Typ. $\pm 20 \mathrm{~mm}^{6)}$, typ. $\pm 15 \mathrm{~mm}^{7)}$
Type of light	Visible red light
Light source ${ }^{8)}$	Laser
Light spot size (distance)	$\emptyset 12 \mathrm{~mm}(1,800 \mathrm{~mm})$
Wave length	$658 \mathrm{~nm}$
Laser class	1 (IEC 60825-1 / CDRH 21 CFR 1040.10 \& 1040.11)
Adjustment	Potentiometer, 4 turns (2 x) Single teach-in button (2 x) IO-Link (depending on type)

${ }^{1)}$ Object with 6 ... 90 \% remission (based on standard white to DIN 5033).
${ }^{2)}$ Adjustable.
${ }^{3)}$ Equivalent to 1σ.
${ }^{4}$) See characteristic curves repeatability.
${ }^{5}$) 6%... 90% remission.
${ }^{6)} 50 \ldots 1000 \mathrm{~mm}$.
7) 1000 ... 1800 mm .
${ }^{8)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{u}}=+25^{\circ} \mathrm{C}$.

Mechanics/electronics

Supply voltage	$\begin{aligned} & 12 \vee D C . . .30 \vee D C^{11)} \\ & 10 \vee D C . . .30 \vee D C^{1 / 3)} \\ & (\text { depending on type) } \end{aligned}$
Ripple ${ }^{4)}$	$\leq 5 \mathrm{~V}_{\mathrm{pp}}$
Power consumption ${ }^{5)}$	$\leq 70 \mathrm{~mA}$
Output type ${ }^{6)} 7$ 7)	PUSH/PULL, PNP, NPN
Number of switching outputs	$\begin{aligned} & 2(\mathrm{Q} 1, \mathrm{Q} 2)^{6)} \\ & 1(\mathrm{Q} 1)^{7)} \\ & \text { (depending on type) }^{\text {(den }} \end{aligned}$
Switching mode ${ }^{6) 7}$	Light switching
Output current $\mathrm{I}_{\text {max }}$.	$\leq 100 \mathrm{~mA} / \leq 50 \mathrm{~mA}$ (depending on type)
Response time ${ }^{8)}$	$\leq 5 \mathrm{~ms}$
Switching frequency ${ }^{9}$	100 Hz
Analog output	$4 \mathrm{~mA} \ldots 20 \mathrm{~mA}(\leq 450 \Omega) / 0 \mathrm{~V} \ldots 10 \mathrm{~V}(\geq 50 \mathrm{k} \Omega)$ / switchable
Resolution of analog output	12 bit
Output time	$\leq 5 \mathrm{~ms}$

Input	$\mathrm{MF}_{\text {in }}=$ multifunctional input programmable Sender off (depending on type)
Connection type	Male connector, M12
Circuit protection	$\begin{aligned} & A^{10)} \\ & B^{11)} \\ & C^{12)} \end{aligned}$
Protection class	III
Weight	48 g
Housing material	VISTAL ${ }^{\text {® }}$
Optics material	Plastic, PMMA
Enclosure rating	IP67
Ambient operating temperature ${ }^{\text {13) }}{ }^{14)} 15$)	$-35^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Ambient storage temperature	$-40^{\circ} \mathrm{C} \ldots+70{ }^{\circ} \mathrm{C}$
Warm-up time ${ }^{15}$	<15 min
Initialization time	< 300 ms

${ }^{1)}$ Limit values. Operated in short-circuit protected network: max. 8 A .
${ }^{2)} \mathrm{Vs}$ min when using the voltage output $=13 \mathrm{~V}$.
${ }^{3)} \mathrm{V}_{\mathrm{s}}$ min at IO-Link operation $=18 \mathrm{~V}$.
${ }^{\text {4) }}$ May not exceed or fall below U_{v} tolerances.
${ }^{5}$) Without load. At $V_{S}=24 \mathrm{~V}$.
${ }^{6}$) Q1, Q2 $=2$ switching thresholds, light switching.
${ }^{7}$) Q1 = 1 switching threshold, light switching.
${ }^{8)}$ Signal transit time with resistive load.
${ }^{9)}$ With light/dark ratio 1:1.
${ }^{10)} \mathrm{A}=\mathrm{V}_{\mathrm{s}}$ connections reverse-polarity protected.
${ }^{11)} B=$ inputs and output reverse-polarity protected.
${ }^{12)} \mathrm{C}=$ interference suppression.
${ }^{13)}$ As of $\mathrm{T}_{\mathrm{a}}=45{ }^{\circ} \mathrm{C}$, a max. load current $\mathrm{I}_{\max }=50 \mathrm{~mA}$ is permitted.
${ }^{14)}$ For Vs $\leq 24 \mathrm{~V}$. When $\mathrm{Tu}=45^{\circ} \mathrm{C}$ or above, a maximum load resistance of $300 \Omega \ldots 450 \Omega$ is permitted on QA.
${ }^{\text {15) }}$ Below $\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ a warm-up time is required.

Fieldbus, industrial network

Fieldbus integration	IO-Link V1.1
Mode	COM $2(38,4 \mathrm{kBaud})$
Cycle time	5 ms
Process data length	32 Bit
Process data structure	Bit $0=$ switching signal Q_{01} Bit $1=$ switching signal Q_{02}
	Bit $2 \ldots 8=$ BDC $2 \ldots 8$ Bit $9 \ldots 15=$ empty Bit $16 \ldots 31=$ distance value
	8 switching points for distance to object, of which 2 can be inverted, 1 switching point as switching window or configurable with hysteresis. Multifunctional input: sender off, external teach, inactive
Additional features	

Ordering information

PowerProx Distance Shiny, switching output

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: 50 mm ... 1,800 mm (Object with 6 ... 90% remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {Max: }}: \leq 100 \mathrm{~mA}$

Number of switching outputs	Switching mode $^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no.
2 (Q1, Q2)	Light switching	Single teach-in button $(2 \mathrm{x})$	Sender off	Male connector M12, 5 -pin	cd-284	WTT12L-B2553	1082415
		Potentiometer, 4 turns $(2 \mathrm{x})$	Sender off	Male connector M12, 5 -pin	cd-284	WTT12L-B2556	1082418

${ }^{1}$) Q1, Q2 $=2$ switching thresholds, light switching.

PowerProx Distance Shiny, analog and switching output

- Supply voltage: 12 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.) (Vs min when using the voltage output = 13 V .)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: $50 \mathrm{~mm} . . .1,800 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {max: }}: \leq 50 \mathrm{~mA}$
- Analog output: $4 \mathrm{~mA} . . .20 \mathrm{~mA}(\leq 450 \Omega) / 0 \mathrm{~V} . .10 \mathrm{~V}(\geq 50 \mathrm{k} \Omega)$ / switchable
- Distance value-measuring range: 100 mm ... 1,800 mm (Object with 6 ... 90% remission (based on standard white to DIN 5033).)

Number of switching outputs ${ }^{1)}$	Switching mode ${ }^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no.
1 (Q1)	Light switching	Single teach-in button (2 x)	Sender off	Male connector M12, 5-pin	cd-375	WTT12L-A2553	1082475

${ }^{1)}$ Q1 $=1$ switching threshold, light switching.

PowerProx Distance Shiny, IO-Link

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.) (V_{s} min at IO-Link operation = 18 V .)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: 50 mm ... 1,800 mm (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {max. }}: \leq 100 \mathrm{~mA}$
- Distance value-measuring range: $50 \mathrm{~mm} . . .1,800 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)

Number of switching outputs ${ }^{1)}$	Switching mode ${ }^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no.
2 (Q1, Q2)	Light switching	Single teach-in button (2 x) IO-Link	$\mathrm{MF}_{\text {in }}=$ multifunctional input programmable	Male connector M12, 5-pin	cd-290	WTT12LC-B2553	1082412

${ }^{1}$) Q1, Q2 $=2$ switching thresholds, light switching.

Dimensional drawings (Dimensions in mm (inch))
Switching output and IO-Link

Analog and switching output

Connection diagram

Cd-290

Sensing range

Min. distance from object to background in mm (inch)

(1) Sensing range on black, 6\% remission
(2) Sensing range on white, 90% remission

Reproducibility
Repeatablility in mm (inch)

[^2](2) 90% remission, on white

Cd-375

Light spot size
Radius in mm (inch)

(1) Light spot horizontal
(2) Light spot vertical

FOR HIGH SPEED DETECTION

Additional information

Detailed technical data 25
Ordering information 27
Dimensional drawings 28
Connection diagram. 29
Sensing range 30
Light spot size 30
Reproducibility 30

Product description

Quick response times, high switching frequencies: PowerProx Speed offers all of this as well as reliable object detection at sensing ranges up to 2.5 m . It is ideal for use in the packaging industry or in any application that relies on detection at top speed. The small PowerProx Speed housing combines time-of-flight technology, laser class 1 (i.e., no danger to eyes), outstanding optics, and fast signal processing. The MultiTask

At a glance

- Time-of-flight technology, laser class 1
- Sensing range for object detection: 5 cm to 2.5 m
- Switching frequency: $1,000 \mathrm{~Hz}$
- Minimum distance between the object and background: 15 ... 36 mm

Your benefits

- Rapid counting and detection of object edges at sensing ranges between 5 cm and 2.5 m
- Reliable object detection, e.g., even with shiny or jet-black surfaces and background reflections
- Highly visible light spot simplifies alignment of the photoelectric proximity sensor
photoelectric sensor is adjusted via potentiometer or teach-in button. There are versions available with either one or two separately adjustable switching thresholds with analog output or IO-Link, depending on the application. IO-Link can be used to define up to eight switching points and to make use of the smart sensor functions. The VISTAL ${ }^{\text {M }}$ housing ensures the device is sufficiently rugged.
- VISTAL ${ }^{\text {TM }}$ housing
- 1 or 2 switching points which can be adjusted separately
- Analog output
- IO-Link available as an option (distance value, 8 switching points, smart sensor functions)
- Precise, simple adjustment with potentiometer or teach-in button
- Eye-safe thanks to laser class 1
- High levels of availability and durability. Rugged even when subjected to high mechanical loads thanks to VISTAL ${ }^{\text {TM }}$ housing.
- Small housing offers great flexibility in terms of machine design
- IO-Link extends functionality
\rightarrow www.sick.com/PowerProx
For more information, simply enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples, and much more.

Detailed technical data

Features

Sensor principle	Photoelectric proximity sensor
Detection principle	Background suppression
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$20 \mathrm{~mm} \times 49.6 \mathrm{~mm} \times 44.2 \mathrm{~mm}$
Housing design (light emission)	Rectangular
Sensing range max. ${ }^{1)}$	50 mm ... 2,500 mm
Sensing range ${ }^{2)}$	100 mm ... 2,500 mm
Distance value-measuring range ${ }^{1)}$	$\begin{aligned} & 50 \mathrm{~mm} \ldots 2,500 \mathrm{~mm} \\ & 100 \mathrm{~mm} \ldots 2,500 \mathrm{~mm} \\ & \text { (depending on type) } \end{aligned}$
Distance value-resolution	1 mm
Distance value-repeatability ${ }^{\text {3) }}{ }^{4)}$ 5)	2,3 mm ... 6,1 mm
Distance value-accuracy	Typ. $\pm 15 \mathrm{~mm}$
Type of light	Visible red light
Light source ${ }^{6)}$	Laser
Light spot size (distance)	$\emptyset 14 \mathrm{~mm}(2,500 \mathrm{~mm})$
Wave length	658 nm
Laser class	1 (IEC 60825-1 / CDRH 21 CFR 1040.10 \& 1040.11)
Adjustment	Potentiometer, 4 turns (1 x) Potentiometer, 4 turns (2 x) Single teach-in button (1 x) Single teach-in button (2 x) IO-Link (depending on type)

${ }^{1)}$ Object with 6 ... 90% remission (based on standard white to DIN 5033).
${ }^{2)}$ Adjustable.
${ }^{3)}$ Equivalent to 1σ.
${ }^{4)}$ See characteristic curves repeatability.
${ }^{5}$) 6%... 90% remission.
${ }^{6)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{u}}=+25{ }^{\circ} \mathrm{C}$.

Mechanics/electronics

Supply voltage	$\begin{aligned} & 10 \vee D C . . .30 \vee D C{ }^{1)^{2)}} \\ & 12 \vee D C . . .30 \vee D C^{1)} \\ & \text { (depending on type) } \end{aligned}$
Ripple ${ }^{4)}$	$\leq 5 \mathrm{~V}_{\mathrm{pp}}$
Power consumption ${ }^{5)}$	$\leq 70 \mathrm{~mA}$
Output type ${ }^{67}{ }^{\text {7) }}$ 8)	PUSH/PULL, PNP, NPN
Number of switching outputs	$\begin{aligned} & 2(\mathrm{Q}, / \mathrm{Q})^{6} \\ & 2(\mathrm{Q} 1, \mathrm{Q} 2)^{7} \\ & 1(\mathrm{Q} 1)^{8)} \\ & \text { (depending on type) } \end{aligned}$
Switching mode	Light switching ${ }^{\text {7) }}$ 8) Light/dark switching ${ }^{6)}$ (depending on type)
Output current $\mathrm{I}_{\text {max }}$.	$\leq 100 \mathrm{~mA}$ / $\leq 50 \mathrm{~mA}$ (depending on type)
Response time ${ }^{9}$	$\leq 0.5 \mathrm{~ms}$
Switching frequency ${ }^{10}$	$1,000 \mathrm{~Hz}$
Analog output	$4 \mathrm{~mA} \ldots 20 \mathrm{~mA}(\leq 450 \Omega) / 0 \mathrm{~V} \ldots 10 \mathrm{~V}(\geq 50 \mathrm{k} \Omega)$ / switchable
Resolution of analog output	12 bit

$\left.\begin{array}{|l|l|}\hline \text { Output time } & \leq 3 \mathrm{~ms} \\ \hline \text { Input } & \begin{array}{l}\mathrm{MF}_{\text {in }}=\text { multifunctional input programmable } \\ \text { L/D }=\text { light/dark switching }\end{array} \\ \text { Sender off } \\ \text { (depending on type) }\end{array}\right\}$
${ }^{1)}$ Limit values. Operated in short-circuit protected network: max. 8 A .
${ }^{2)} \mathrm{V}_{\mathrm{s}} \mathrm{min}$ at IO-Link operation $=18 \mathrm{~V}$.
${ }^{3)} \mathrm{Vs}$ min when using the voltage output $=13 \mathrm{~V}$.
${ }^{\text {4) }}$ May not exceed or fall below U_{v} tolerances.
${ }^{5}$) Without load. At $\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$.
$\left.{ }^{6}\right) \mathrm{Q}, \mathrm{Q}=1$ switching threshold, light/dark switching (complementary).
${ }^{7}$) Q1, Q2 $=2$ switching thresholds, light switching.
${ }^{8)}$ Q1 $=1$ switching threshold, light switching.
${ }^{9)}$ Signal transit time with resistive load.
${ }^{10)}$ With light/dark ratio 1:1.
${ }^{11)}$ Do not bend below $0{ }^{\circ} \mathrm{C}$.
${ }^{12)} \mathrm{A}=\mathrm{V}_{\mathrm{s}}$ connections reverse-polarity protected.
${ }^{13)} B=$ inputs and output reverse-polarity protected.
${ }^{14)} \mathrm{C}=$ interference suppression.
${ }^{15)}$ As of $T_{a}=45{ }^{\circ} \mathrm{C}$, a max. load current $I_{\max }=50 \mathrm{~mA}$ is permitted.
${ }^{16)}$ For Vs $\leq 24 \mathrm{~V}$. When $\mathrm{Tu}=45^{\circ} \mathrm{C}$ or above, a maximum load resistance of $300 \Omega \ldots 450 \Omega$ is permitted on QA.
${ }^{\text {17) }}$ Below $\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ a warm-up time is required.

Fieldbus, industrial network

Fieldbus integration	IO-Link V1.1
Mode	COM 2 (38,4 kBaud)
Cycle time	5 ms
Process data length	32 Bit
Process data structure	Bit $0=$ switching signal Q_{01} Bit 1 = switching signal Q_{02} Bit $2 \ldots 8=$ BDC $2 \ldots 8$ Bit $9 \ldots 15$ = empty Bit 16 ... 31 = distance value
Additional features	8 switching points for distance to object, of which 2 can be inverted, 1 switching point as switching window or configurable with hysteresis. Multifunctional input: sender off, external teach, inactive

Ordering information

PowerProx Speed, switching output

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A .)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: $50 \mathrm{~mm} . . .2,500 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {Max. }}: \leq 100 \mathrm{~mA}$

Number of switching outputs	Switching mode	Adjustment	Input	Connection	Connection diagram	Type	Part no.
$2(\mathrm{Q}, / \mathrm{Q})^{1)}$	Light/dark switching ${ }^{1)}$	Single teach-in button (1 x)	Sender off	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-282	WTT12L-B3532	1072638
				Cable, 5-wire, 2 m, PVC	cd-283	WTT12L-B1532	1072632
				Male connector M12, 5-pin	cd-282	WTT12L-B2532	1072635
		Potentiometer, 4 turns (1 x)	Sender off	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-282	WTT12L-B3531	1072612
				Cable, 5-wire, 2 m, PVC	cd-283	WTT12L-B1531	1072606
				Male connector M12, 5-pin	cd-282	WTT12L-B2531	1072609
$2(\mathrm{Q} 1, \mathrm{Q} 2)^{\text {2 }}$	Light switching ${ }^{2)}$	Single teach-in button (2 x)	L/D = light/ dark switching	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-286	WTT12L-B3537	1072655
				Cable, 5-wire, 2 m, PVC	cd-287	WTT12L-B1537	1072649
				Male connector M12, 5-pin	cd-286	WTT12L-B2537	1072652
			Sender off	Cable with plug M12, 5-pin, $0.3 \mathrm{~m}, \mathrm{PVC}$	cd-284	WTT12L-B3533	1072646
				Cable, 5-wire, 2 m, PVC	cd-285	WTT12L-B1533	1072641
				Male connector M12, 5-pin	cd-284	WTT12L-B2533	1072531
		Potentiometer, 4 turns (2 x)	$\begin{gathered} \text { L/D = light/ } \\ \text { dark switching } \end{gathered}$	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-286	WTT12L-B3538	1072629
				Cable, 5-wire, 2 m, PVC	cd-287	WTT12L-B1538	1072623
				Male connector M12, 5-pin	cd-286	WTT12L-B2538	1072626
			Sender off	Cable with plug M12, 5-pin, $0.3 \mathrm{~m}, \mathrm{PVC}$	cd-284	WTT12L-B3536	1072620
				Cable, 5-wire, 2 m, PVC	cd-285	WTT12L-B1536	1072615
				Male connector M12, 5-pin	cd-284	WTT12L-B2536	1072618

${ }^{1)} \mathrm{Q}, / \mathrm{Q}=1$ switching threshold, light/dark switching (complementary).
${ }^{2}$) Q1, Q2 $=2$ switching thresholds, light switching.

PowerProx Speed, analog and switching output

- Supply voltage: 12 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.) (Vs min when using the voltage output = 13 V .)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: $50 \mathrm{~mm} . . .2,500 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {мах: }}: \leq 50 \mathrm{~mA}$
- Analog output: $4 \mathrm{~mA} . .22 \mathrm{~mA}(\leq 450 \Omega) / 0 \mathrm{~V} . .10 \mathrm{~V}(\geq 50 \mathrm{k} \Omega)$ / switchable
- Distance value-measuring range: $100 \mathrm{~mm} . . .2,500 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)

Number of switching outputs ${ }^{1)}$	Switching mode ${ }^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no.
1 (Q1)	Light switching	Single teach-in button (2 x)	Sender off	Male connector M12, 5-pin	cd-375	WTT12L-A2533	1082472

${ }^{1}$) Q1 $=1$ switching threshold, light switching.

PowerProx Speed, IO-Link

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.) (Vs min at IO-Link operation = 18 V .)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: $50 \mathrm{~mm} . . .2,500 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {max. }}$: $\leq 100 \mathrm{~mA}$
- Distance value-measuring range: $50 \mathrm{~mm} . . .2,500 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)

Number of switching outputs ${ }^{1)}$	Switching mode ${ }^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no.
2 (Q1, Q2)	Light switching	Single teach-in button (2 x) IO-Link	$\mathrm{MF}_{\text {in }}=\text { multi- }$ functional input programmable	Male connector M12, 5-pin	cd-290	WTT12LC-B2533	1072658

${ }^{1}$) Q1, Q2 $=2$ switching thresholds, light switching.

Dimensional drawings (Dimensions in mm (inch))
Analog and switching output

Switching output and IO-Link

Connection diagram

Cd-286

Cd-282

Cd-287

Cd-283

Cd-284

Cd-285

Cd-375
-4.0 $\frac{1}{1}+(L+)$
\rightarrow whti $\stackrel{2}{=} Q_{a}$
$\rightarrow{ }^{\text {blul }} \frac{3}{-}-(\mathrm{M})$
$\underset{-.-\rfloor}{\text { grai } 5}$ Sender off

Sensing range

Min. distance from object to background in mm (inch)

(1) Sensing range on black, 6% remission
(2) Sensing range on white, 90% remission

Reproducibility
Repeatablility in mm (inch)

(1) 6% remission, on black
(2) 90% remission, on white

Light spot size
Radius in mm (inch)

(1) Light spot horizontal
(2) Light spot vertical

FOR THE DETECTION OF VERY SHINY OBJECTS AT HIGH SPEEDS

Additional information
Detailed technical data 33
Ordering information 35
Dimensional drawings 36
Connection diagram 37
Sensing range 37
Light spot size 37
Reproducibility 37

Product description

The PowerProx Speed Shiny sensor is a variant of the PowerProx Speed MultiTask photoelectric sensor. PowerProx Speed Shiny was specially developed for the detection of shiny objects which reflect a high proportion of the light emitted by the sensor directly to the sensor receiver. Even under these

At a glance

- Time-of-flight technology, laser class 1
- Sensing range for object detection: 5 cm 1.6 m
- Switching frequency: 1000 Hz
- Minimum distance between object and background: $18 \mathrm{~mm} . . .45 \mathrm{~mm}$

Your benefits

- High measurement accuracy even when the emitted light beam meets very shiny objects (no reflectors) vertically
- More precise detection of object edges arriving from the side
conditions, PowerProx Speed Shiny provides accurate, reliable measurements. Positive side effects: Even object edges arriving from the side are detected more precisely and the sensors are less sensitive to dust and steam in the ambient air than the standard PowerProx Speed variant.
- VISTAL ${ }^{\circledR}$ housing
- 1 or 2 switching points which can be adjusted separately
- Analog output
- IO-Link (distance value, 8 switching points, smart sensor functions)
- More precise detection of holes in objects
- Better suppression of dust and steam in ambient air

\rightarrow www.sick.com/PowerProx

For more information, simply enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples, and much more.

Detailed technical data

Features

Sensor principle	Photoelectric proximity sensor
Detection principle	Background suppression
Dimensions (W x H x D)	$20 \mathrm{~mm} \times 49.6 \mathrm{~mm} \times 44.2 \mathrm{~mm}$
Housing design (light emission)	Rectangular
Sensing range max. ${ }^{1)}$	50 mm ... 1,600 mm
Sensing range ${ }^{2)}$	100 mm ... 1,600 mm
Distance value-measuring range ${ }^{1)}$	$50 \mathrm{~mm} . .1$ 1,600 mm $50 \mathrm{~mm} . . .1,600 \mathrm{~mm}$ (depending on type)
Distance value-resolution	1 mm
Distance value-repeatability ${ }^{\text {3 }}{ }^{4)}$ 5)	2,7 mm ... 8,0 mm
Distance value-accuracy	Typ. $\pm 20 \mathrm{~mm}{ }^{6)}$, typ. $\pm 15 \mathrm{~mm}^{7}$
Type of light	Visible red light
Light source ${ }^{8)}$	Laser
Light spot size (distance)	$\emptyset 11 \mathrm{~mm}(1,600 \mathrm{~mm})$
Wave length	658 nm
Laser class	1 (IEC 60825-1 / CDRH 21 CFR 1040.10 \& 1040.11)
Adjustment	Potentiometer, 4 turns (2 x) Single teach-in button (2 x) IO-Link (depending on type)

${ }^{1)}$ Object with 6 ... 90 \% remission (based on standard white to DIN 5033).
${ }^{2)}$ Adjustable.
${ }^{3)}$ Equivalent to 1σ.
${ }^{4}$) See characteristic curves repeatability.
${ }^{5}$) 6%... 90% remission.
${ }^{6)} 50 \ldots 1000 \mathrm{~mm}$.
7) 1000 ... 1600 mm .
${ }^{8)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{u}}=+25^{\circ} \mathrm{C}$.

Mechanics/electronics

Supply voltage	$\begin{aligned} & 10 \vee D C . . .30 \vee D C^{11)} \\ & 12 \vee D C \ldots 30 \vee D C^{13)} \\ & \text { (depending on type) } \end{aligned}$
Ripple ${ }^{4)}$	$\leq 5 \mathrm{~V}_{\text {pp }}$
Power consumption ${ }^{5)}$	$\leq 70 \mathrm{~mA}$
Output type ${ }^{\text {6 7) }}$	PUSH/PULL, PNP, NPN
Number of switching outputs	$\begin{aligned} & 2(\mathrm{Q} 1, \mathrm{Q} 2)^{6} \\ & 1 \text { (Q11 }{ }^{7} \\ & \text { (depending on type) } \end{aligned}$
Switching mode ${ }^{\text {6) 7) }}$	Light switching
Output current $\mathrm{I}_{\text {max }}$.	$\leq 100 \mathrm{~mA} / \leq 50 \mathrm{~mA}$ (depending on type)
Response time ${ }^{8)}$	$\leq 0.5 \mathrm{~ms}$
Switching frequency ${ }^{9}$	$1,000 \mathrm{~Hz}$
Analog output	$4 \mathrm{~mA} . . .20 \mathrm{~mA}(\leq 450 \Omega) / 0 \mathrm{~V} . . .10 \mathrm{~V}(\geq 50 \mathrm{k} \Omega)$ / switchable
Resolution of analog output	12 bit
Output time	$\leq 3 \mathrm{~ms}$

Input	$\mathrm{MF}_{\text {in }}=$ multifunctional input programmable Sender off (depending on type)
Connection type	Male connector, M12
Circuit protection	A ${ }^{10}$ B ${ }^{11)}$ C ${ }^{12)}$
Protection class	III
Weight	48 g
Housing material	VISTAL ${ }^{\text {® }}$
Optics material	Plastic, PMMA
Enclosure rating	IP67
Ambient operating temperature ${ }^{\text {13) }} 1{ }^{14)} 15$)	$-35^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Ambient storage temperature	$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Warm-up time ${ }^{\text {15) }}$	$<15 \mathrm{~min}$
Initialization time	$<300 \mathrm{~ms}$

${ }^{1)}$ Limit values. Operated in short-circuit protected network: max. 8 A .
${ }^{2)} \mathrm{V}_{\mathrm{s}} \mathrm{min}$ at IO-Link operation $=18 \mathrm{~V}$.
${ }^{3)}$ Vs min when using the voltage output $=13 \mathrm{~V}$.
${ }^{\text {4) }}$ May not exceed or fall below U_{v} tolerances.
${ }^{5}$) Without load. At $\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$.
${ }^{6}$ Q1, Q2 $=2$ switching thresholds, light switching.
${ }^{7}$) Q1 $=1$ switching threshold, light switching.
${ }^{8)}$ Signal transit time with resistive load.
${ }^{9)}$ With light/dark ratio 1:1.
${ }^{10)} \mathrm{A}=\mathrm{V}_{\mathrm{s}}$ connections reverse-polarity protected.
${ }^{11)} B=$ inputs and output reverse-polarity protected.
${ }^{12)} \mathrm{C}=$ interference suppression.
${ }^{13)}$ As of $\mathrm{T}_{\mathrm{a}}=45{ }^{\circ} \mathrm{C}$, a max. load current $\mathrm{I}_{\max }=50 \mathrm{~mA}$ is permitted.
${ }^{14)}$ For $\mathrm{Vs} \leq 24 \mathrm{~V}$. When $\mathrm{Tu}=45{ }^{\circ} \mathrm{C}$ or above, a maximum load resistance of $300 \Omega \ldots 450 \Omega$ is permitted on QA.
${ }^{\text {15) }}$ Below $\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ a warm-up time is required.

Fieldbus, industrial network

Fieldbus integration	IO-Link V1.1		
Mode	COM $2(38,4 \mathrm{kBaud})$		
Cycle time	5 ms		
Process data length	32 Bit		
Process data structure	Bit $0=$ switching signal Q_{01}		
	Bit $1=$ switching signal Q_{02}		
	Bit $2 \ldots 8=$ BDC $2 \ldots 8$		
Bit $9 \ldots 15=$ empty			
Bit $16 \ldots 31=$ distance value		\quad	8 switching points for distance to object, of which 2 can be inverted, 1 switching point as
:---			
switching window or configurable with hysteresis. Multifunctional input: sender off, external			
teach, inactive			

Ordering information

PowerProx Speed Shiny, sensing range

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: 50 mm ... 1,600 mm (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {Max: }}: \leq 100 \mathrm{~mA}$

Number of switching outputs	Switching mode $^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no.
2 (Q1, Q2)	Light switching	Single teach-in button $(2 \mathrm{x})$	Sender off	Male connector M12, 5 -pin	cd-284	WTT12L-B2513	1082416
		Potentiometer, 4 turns $(2 \mathrm{x})$	Sender off	Male connector M12, 5 -pin	cd-284	WTT12L-B2516	1082420

${ }^{1}$) Q1, Q2 $=2$ switching thresholds, light switching.

PowerProx Speed Shiny, analog and switching output

- Supply voltage: 12 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.) (Vs min when using the voltage output = 13 V .)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: $50 \mathrm{~mm} . . .1,600 \mathrm{~mm}$ (Object with 6 ... 90% remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {max: }}: \leq 50 \mathrm{~mA}$
- Analog output: $4 \mathrm{~mA} . .20 \mathrm{~mA}(\leq 450 \Omega) / 0 \mathrm{~V} . .10 \mathrm{~V}(\geq 50 \mathrm{k} \Omega)$ / switchable
- Distance value-measuring range: $100 \mathrm{~mm} . . .1,600 \mathrm{~mm}$ (Object with 6 ... 90% remission (based on standard white to DIN 5033).)

Number of switching outputs ${ }^{1)}$	Switching mode ${ }^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no.
1 (Q1)	Light switching	Single teach-in button (2 x)	Sender off	Male connector M12, 5-pin	cd-375	WTT12L-A2513	1082476

${ }^{1)}$ Q1 $=1$ switching threshold, light switching.

PowerProx Speed Shiny, IO-Link

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.) (V_{s} min at IO-Link operation = 18 V .)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: $50 \mathrm{~mm} . . .1,600 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {max. }}: \leq 100 \mathrm{~mA}$
- Distance value-measuring range: $50 \mathrm{~mm} . . .1,600 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)

Number of switching outputs ${ }^{1)}$	Switching mode ${ }^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no.
2 (Q1, Q2)	Light switching	Single teach-in button (2 x) IO-Link	$\mathrm{MF}_{\text {in }}=\text { multi }-$ functional input programmable	Male connector M12, 5-pin	cd-290	WTT12LC-B2513	1082413

${ }^{1}$) Q1, Q2 $=2$ switching thresholds, light switching.

Dimensional drawings (Dimensions in mm (inch))
Switching output and IO-Link

Analog and switching output

(1) Optical axis sender

(2) Optical axis receiver
(3) LED indicator yellow: Status of analog output (4) LED indicator green: power on
(5) Status indicator LED, yellow: Status switching output
(6) Mounting hole, $\varnothing 4.2 \mathrm{~mm}$
(7) Connection
(8) Single teach-in button

Connection diagram

Cd-290

Cd-284

Sensing range
Min. distance from object to background in mm (inch)

(1) Sensing range on black, 6% remission
(2) Sensing range on white, 90% remission

Reproducibility
Repeatablility in mm (inch)

(1) 6% remission, on black
(2) 90% remission, on white

Cd-375

Light spot size
Radius in mm (inch)

(1) Light spot horizontal
(2) Light spot vertical

FOR DETECTING THE SMALLEST OF OBJECTS AND OBJECT FEATURES

Additional information
Detailed technical data 39
Ordering information 41
Dimensional drawings 42
Connection diagram 43
Sensing range 44
Light spot size 44
Reproducibility 44

Product description

With a sensing range of up to 1.8 m , PowerProx Precision detects even the smallest of objects. Ideal for quality control for the automotive industry and its suppliers, or for checking the pick-up point on a robot. The small PowerProx Precision housing combines time-offlight technology, laser class 1 (i.e., no danger to eyes), outstanding optics, and fast signal processing. The MultiTask

At a glance

- Time-of-flight technology, laser class 1
- Sensing range for object detection: 5 cm to 1.8 m
- Switching frequency: 30 Hz
- Minimum distance between the object and background: 6 ... 14 mm

Your benefits

- Precise detection of small and flat objects at sensing ranges between 5 cm and 1.8 m
- Reliable object detection, e.g., even with shiny or jet-black surfaces and background reflections
- Highly visible light spot simplifies alignment of the photoelectric proximity sensor
photoelectric sensor is adjusted via potentiometer or teach-in button. There are versions available with either one or two separately adjustable switching thresholds with analog output or IO-Link, depending on the application. IO-Link can be used to define up to eight switching points and to make use of the smart sensor functions. The VISTAL ${ }^{\text {TM }}$ housing ensures the device is sufficiently rugged.
- VISTAL ${ }^{\text {TM }}$ housing
- 1 or 2 switching points which can be adjusted separately
- Analog output
- IO-Link available as an option (distance value, 8 switching points, smart sensor functions)
- Precise, simple adjustment with potentiometer or teach-in button
- Eye-safe thanks to laser class 1
- High levels of availability and durability. Rugged even when subjected to high mechanical loads thanks to VISTAL ${ }^{\text {IM }}$ housing.
- Small housing offers great flexibility in terms of machine design
- IO-Link extends functionality

\rightarrow www.sick.com/PowerProx

For more information, simply enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples, and much more.

Detailed technical data

Features

Sensor principle	Photoelectric proximity sensor
Detection principle	Background suppression
Dimensions (Wx H x D	$20 \mathrm{~mm} \times 49.6 \mathrm{~mm} \times 44.2 \mathrm{~mm}$
Housing design (light emission)	Rectangular
Sensing range max. ${ }^{1)}$	$50 \mathrm{~mm} . . .1,800 \mathrm{~mm}$
Sensing range ${ }^{2)}$	$100 \mathrm{~mm} . . .1,800 \mathrm{~mm}$
Distance value-measuring range ${ }^{1)}$	$\begin{aligned} & 50 \mathrm{~mm} . . .1,800 \mathrm{~mm} \\ & 100 \mathrm{~mm} . .1,800 \mathrm{~mm} \\ & \text { (depending on type) } \end{aligned}$
Distance value-resolution	1 mm
Distance value-repeatability ${ }^{\text {3) }}{ }^{4)}$ 5)	0,9 mm ... 1,3 mm
Distance value-accuracy	Typ. $\pm 15 \mathrm{~mm}$
Type of light	Visible red light
Light source ${ }^{6}$	Laser
Light spot size (distance)	$\emptyset 12 \mathrm{~mm}(1,800 \mathrm{~mm})$
Wave length	658 nm
Laser class	1 (IEC 60825-1 / CDRH 21 CFR 1040.10 \& 1040.11)
Adjustment	Potentiometer, 4 turns (1 x) Potentiometer, 4 turns (2 x) Single teach-in button (1 x) Single teach-in button (2 x) IO-Link (depending on type)

${ }^{1)}$ Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).
${ }^{2)}$ Adjustable.
${ }^{3}$) Equivalent to 10 .
${ }^{4}$) See characteristic curves repeatability.
${ }^{5}$) 6%... 90% remission.
${ }^{6)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T} u=+25^{\circ} \mathrm{C}$.

Mechanics/electronics

Supply voltage	$\begin{aligned} & 10 \vee D C . . .30 \vee D C^{11)} \\ & 12 \vee D C . . .30 \vee D C^{1 / 3)} \\ & \text { (depending on type) } \end{aligned}$
Ripple ${ }^{4)}$	$\leq 5 \mathrm{~V}_{\mathrm{pp}}$
Power consumption ${ }^{5)}$	$\leq 70 \mathrm{~mA}$
Output type ${ }^{61}{ }^{\text {7) }}$ 8)	PUSH/PULL, PNP, NPN
Number of switching outputs	$\begin{aligned} & 2(\mathrm{Q}, / \mathrm{Q})^{6} \\ & 2(\mathrm{Q} 1, \mathrm{Q} 2)^{7} \\ & 1(\mathrm{Q} 1)^{8)} \\ & \text { (depending on type) }^{\text {(den }} \end{aligned}$
Switching mode	Light switching ${ }^{\text {7) }}$ 8) Light/dark switching ${ }^{6)}$ (depending on type)
Output current $\mathrm{I}_{\text {max }}$.	$\leq 100 \mathrm{~mA} / \leq 50 \mathrm{~mA}$ (depending on type)
Response time ${ }^{9}$	$\leq 16.7 \mathrm{~ms}$
Switching frequency ${ }^{10}$	30 Hz
Analog output	$4 \mathrm{~mA} \ldots 20 \mathrm{~mA}(\leq 450 \Omega) / 0 \mathrm{~V} \ldots 10 \mathrm{~V}(\geq 50 \mathrm{k} \Omega)$ / switchable
Resolution of analog output	12 bit

Output time	$\leq 16.7 \mathrm{~ms}$
Input	$\mathrm{MF}_{\text {in }}=$ multifunctional input programmable L/D = light/dark switching Sender off (depending on type)
Connection type	Cable with male connector, M12, $0.3 \mathrm{~m}^{11)}$ Male connector, M12 Cable, $2 \mathrm{~m}^{11)}$ (depending on type)
Circuit protection	$\begin{aligned} & A^{12)} \\ & B^{13)} \\ & C^{14)} \end{aligned}$
Protection class	III
Weight Cable, 5-wire Male connector M12, 5-pin Cable with plug M12, 5-pin	$\begin{aligned} & 111 \mathrm{~g} \\ & 48 \mathrm{~g} \\ & 80 \mathrm{~g} \end{aligned}$
Housing material	VISTAL ${ }^{\text {® }}$
Optics material	Plastic, PMMA
Enclosure rating	IP67
Ambient operating temperature ${ }^{\text {15) }} 16$ (17)	$-35^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Ambient storage temperature	$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Warm-up time ${ }^{17)}$	< 15 min
Initialization time	< 300 ms

${ }^{1)}$ Limit values. Operated in short-circuit protected network: max. 8 A .
${ }^{2)} \mathrm{V}_{\mathrm{s}}$ min at IO-Link operation $=18 \mathrm{~V}$.
${ }^{3)} \mathrm{Vs}$ min when using the voltage output $=13 \mathrm{~V}$.
${ }^{4)}$ May not exceed or fall below U_{v} tolerances.
${ }^{5}$) Without load. At $\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$.
$\left.{ }^{6}\right) \mathrm{Q}, \mathrm{Q}=1$ switching threshold, light/dark switching (complementary).
${ }^{7}$) Q1, Q2 $=2$ switching thresholds, light switching.
${ }^{8)}$ Q1 $=1$ switching threshold, light switching.
${ }^{9}$) Signal transit time with resistive load.
${ }^{10)}$ With light/dark ratio 1:1.
${ }^{11)}$ Do not bend below $0{ }^{\circ} \mathrm{C}$.
${ }^{12)} A=V_{s}$ connections reverse-polarity protected.
${ }^{13)} B=$ inputs and output reverse-polarity protected.
${ }^{14)} \mathrm{C}=$ interference suppression.
${ }^{15)}$ As of $\mathrm{T}_{\mathrm{a}}=45^{\circ} \mathrm{C}$, a max. load current $\mathrm{I}_{\max }=50 \mathrm{~mA}$ is permitted.
${ }^{16)}$ For Vs $\leq 24 \mathrm{~V}$. When $\mathrm{Tu}=45^{\circ} \mathrm{C}$ or above, a maximum load resistance of $300 \Omega \ldots 450 \Omega$ is permitted on QA.
${ }^{\text {17) }}$ Below $\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ a warm-up time is required.

Fieldbus, industrial network

Fieldbus integration	IO-Link V1.1
Mode	COM $2(38,4$ kBaud $)$
Cycle time	5 ms
Process data length	32 Bit
Process data structure	Bit $0=$ switching signal Q_{01} Bit $1=$ switching signal Qo2
	Bit $2 \ldots 8=$ BDC $2 \ldots 8$
	Bit $9 \ldots 15=$ empty Bit $16 \ldots 31=$ distance value
	8 switching points for distance to object, of which 2 can be inverted, 1 switching point as switching window or configurable with hysteresis. Multifunctional input: sender off, external teach, inactive
Additional features	

Ordering information

PowerProx Precision, switching output

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: $50 \mathrm{~mm} . . .1,800 \mathrm{~mm}$ (Object with 6 ... 90% remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {max. }}: \leq 100 \mathrm{~mA}$

Number of switching outputs	Switching mode	Adjustment	Input	Connection	Connection diagram	Type	Part no.
$2(\mathrm{Q}, / \mathrm{Q})^{1)}$	Light/dark switching ${ }^{1)}$	Single teach-in button (1 x)	Sender off	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-282	WTT12L-B3542	1072639
				Cable, 5 -wire, $2 \mathrm{~m}, \mathrm{PVC}$	cd-283	WTT12L-B1542	1072633
				Male connector M12, 5-pin	cd-282	WTT12L-B2542	1072636
		Potentiometer, 4 turns (1 x)	Sender off	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-282	WTT12L-B3541	1072613
				Cable, 5-wire, 2 m, PVC	cd-283	WTT12L-B1541	1072607
				Male connector M12, 5-pin	cd-282	WTT12L-B2541	1072610
$2(\mathrm{Q} 1, \mathrm{Q} 2)^{\text {2) }}$	Light switching ${ }^{2)}$	Single teach-in button (2 x)	$\begin{gathered} \text { L/D = light/ } \\ \text { dark switching } \end{gathered}$	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-286	WTT12L-B3547	1072656
				Cable, 5-wire, 2 m, PVC	cd-287	WTT12L-B1547	1072650
				Male connector M12, 5-pin	cd-286	WTT12L-B2547	1072653
			Sender off	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-284	WTT12L-B3543	1072647
				Cable, 5-wire, 2 m, PVC	cd-285	WTT12L-B1543	1072642
				Male connector M12, 5-pin	cd-284	WTT12L-B2543	1072644
		Potentiometer, 4 turns (2 x)	L/D = light/ dark switching	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-286	WTT12L-B3548	1072630
				Cable, 5-wire, 2 m, PVC	cd-287	WTT12L-B1548	1072624
				Male connector M12, 5-pin	cd-286	WTT12L-B2548	1072627
			Sender off	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-284	WTT12L-B3546	1072621
				Cable, 5 -wire, 2 m, PVC	cd-285	WTT12L-B1546	1072616
				Male connector M12, 5-pin	cd-284	WTT12L-B2546	1072530

${ }^{1)} \mathrm{Q}, / \mathrm{Q}=1$ switching threshold, light/dark switching (complementary).
${ }^{2}$) Q1, Q2 $=2$ switching thresholds, light switching.

PowerProx Precision, analog and switching output

- Supply voltage: 12 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.) (Vs min when using the voltage output = 13 V .)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: $50 \mathrm{~mm} . . .1,800 \mathrm{~mm}$ (Object with 6 ... 90% remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {мах: }}$: $\leq 50 \mathrm{~mA}$
- Analog output: $4 \mathrm{~mA} . .22 \mathrm{~mA}(\leq 450 \Omega) / 0 \mathrm{~V} . .10 \mathrm{~V}(\geq 50 \mathrm{k} \Omega)$ / switchable
- Distance value-measuring range: 100 mm ... 1,800 mm (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)

Number of switching outputs ${ }^{1)}$	Switching mode $^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no.
1 (Q1)	Light switching	Single teach-in button $(2 x)$	Sender off	Male connector M12, 5-pin	cd-375	WTT12L-A2543	1082473

${ }^{1)}$ Q1 $=1$ switching threshold, light switching.

PowerProx Precision, IO-Link

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.) (Vs min at IO-Link operation = 18 V .)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: $50 \mathrm{~mm} . . .1,800 \mathrm{~mm}$ (Object with 6 ... 90% remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {max. }}$: $\leq 100 \mathrm{~mA}$
- Distance value-measuring range: $50 \mathrm{~mm} . . .1,800 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)

Number of switching outputs ${ }^{1)}$	Switching mode ${ }^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no .
2 (Q1, Q2)	Light switching	Single teach-in button (2 x) IO-Link	$\begin{aligned} & \mathrm{MF}_{\text {in }}=\text { multi- } \\ & \text { functional input } \\ & \text { programmable } \end{aligned}$	Male connector M12, 5-pin	cd-290	WTT12LC-B2543	1072659

${ }^{1}$) Q1, Q2 $=2$ switching thresholds, light switching.

Dimensional drawings (Dimensions in mm (inch))
Analog and switching output

(1) Optical axis sender
(2) Optical axis receiver
(3) LED indicator yellow: Status of analog output
(4) LED indicator green: power on
(5) Status indicator LED, yellow: Status switching output
(6) Mounting hole, $\varnothing 4.2 \mathrm{~mm}$
(7) Connection
(8) Single teach-in button

Switching output and IO-Link

Connection diagram

Cd-287

Cd-284

Cd-285

Cd-375

Sensing range

Min. distance from object to background in mm (inch)

(1) Sensing range on black, 6% remission
(2) Sensing range on white, 90\% remission

Reproducibility
Repeatablility in mm (inch)

(1) 6% remission, on black
(2) 90% remission, on white

Light spot size
Radius in mm (inch)

(1) Light spot horizontal
(2) Light spot vertical

FOR THE DETECTION OF VERY SMALL, VERY SHINY OBJECTS

Additional information
Detailed technical data 47
Ordering information 49
Dimensional drawings 50
Connection diagram 51
Sensing range 51
Light spot size 51
Reproducibility 51

Product description

The PowerProx Precision Shiny sensor is a variant of the PowerProx Precision MultiTask photoelectric sensor. PowerProx Precision Shiny was specially developed for the detection of shiny objects which reflect a high proportion of the light emitted by the sensor directly to the sensor receiver. Even

At a glance

- Time-of-flight technology, laser class 1
- Sensing range for object detection: 5 cm . 1.4 m
- Switching frequency: 30 Hz
- Minimum distance between object and background: $7 \mathrm{~mm} . . .17 \mathrm{~mm}$

Your benefits

- High measurement accuracy even when the emitted light beam meets very shiny objects (no reflectors) vertically
- More precise detection of object edges arriving from the side
under these conditions, PowerProx Precision Shiny provides accurate, reliable measurements. Positive side effects: The sensors even detect object edges arriving from the side more precisely and are less sensitive to dust and steam in the ambient air than the standard PowerProx Precision variant.
- VISTAL ${ }^{\circledR}$ housing
- 1 or 2 switching points which can be adjusted separately
- Analog output
- IO-Link (distance value, 8 switching points, smart sensor functions)
- More precise detection of holes in objects
- Better suppression of dust and steam in ambient air

\rightarrow www.sick.com/PowerProx

For more information, simply enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples, and much more.

Detailed technical data

Features

Sensor principle	Photoelectric proximity sensor
Detection principle	Background suppression
Dimensions (Wx H x D)	$20 \mathrm{~mm} \times 49.6 \mathrm{~mm} \times 44.2 \mathrm{~mm}$
Housing design (light emission)	Rectangular
Sensing range max. ${ }^{1)}$	50 mm ... 1,400 mm
Sensing range ${ }^{2)}$	$100 \mathrm{~mm} . . .1,400 \mathrm{~mm}$
Distance value-measuring range ${ }^{1)}$	$\begin{aligned} & 50 \mathrm{~mm} \ldots 1,400 \mathrm{~mm} \\ & 100 \mathrm{~mm} \ldots 1,400 \mathrm{~mm} \\ & \text { (depending on type) } \end{aligned}$
Distance value-resolution	1 mm
Distance value-repeatability ${ }^{\text {3) }}{ }^{4)}$ 5)	1,1 mm ... 1,5 mm
Distance value-accuracy	Typ. $\pm 20 \mathrm{~mm}^{6)}$, typ. $\pm 15 \mathrm{~mm}^{7}$
Type of light	Visible red light
Light source ${ }^{8)}$	Laser
Light spot size (distance)	Ø $10 \mathrm{~mm}(1,400 \mathrm{~mm})$
Wave length	658 nm
Laser class	1 (IEC 60825-1 / CDRH 21 CFR 1040.10 \& 1040.11)
Adjustment	Potentiometer, 4 turns (2 x) Single teach-in button (2 x) IO-Link (depending on type)

${ }^{1)}$ Object with 6 ... 90 \% remission (based on standard white to DIN 5033).
${ }^{2)}$ Adjustable.
${ }^{3)}$ Equivalent to 1σ.
${ }^{4}$) See characteristic curves repeatability.
${ }^{5}$) 6%... 90% remission.
${ }^{6)} 50 \ldots 1000 \mathrm{~mm}$.
7) 1000 ... 1400 mm .
${ }^{8)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{u}}=+25^{\circ} \mathrm{C}$.

Mechanics/electronics

Supply voltage	$\begin{aligned} & 10 \vee D C . . .30 \vee D C^{11)} \\ & 12 \vee D C . . .30 \vee D C^{1 / 3)} \\ & \text { (depending on type) } \end{aligned}$
Ripple ${ }^{4)}$	$\leq 5 \mathrm{~V}_{\text {pp }}$
Power consumption ${ }^{5)}$	$\leq 70 \mathrm{~mA}$
Output type ${ }^{67}{ }^{\text {7) }}$ 8)	PUSH/PULL, PNP, NPN
Number of switching outputs	$\begin{aligned} & 2(\mathrm{Q} 1, \mathrm{Q} 2)^{6)} \\ & 1(\mathrm{Q} 1)^{7} \\ & 2(\mathrm{Q} / \overline{\mathrm{Q}})^{8)} \\ & \text { (depending on type) } \end{aligned}$
Switching mode	Light switching ${ }^{6)}$ 7) Light/dark switching ${ }^{8)}$ (depending on type)
Output current $\mathrm{I}_{\text {max }}$.	$\leq 100 \mathrm{~mA} / \leq 50 \mathrm{~mA}$ (depending on type)
Response time ${ }^{9}$	≤ 16.7 ms
Switching frequency ${ }^{10}$	30 Hz
Analog output	$4 \mathrm{~mA} . . .20 \mathrm{~mA}(\leq 450 \Omega) / 0 \mathrm{~V} . . .10 \mathrm{~V}(\geq 50 \mathrm{k} \Omega)$ / switchable
Resolution of analog output	12 bit
Output time	$\leq 16.7 \mathrm{~ms}$

Input	$\mathrm{MF}_{\text {in }}=$ multifunctional input programmable Sender off (depending on type)
Connection type	Male connector, M12
Circuit protection	$A^{11)}$ B ${ }^{12)}$ C ${ }^{13)}$
Protection class	III
Weight	48 g
Housing material	VISTAL ${ }^{\text {® }}$
Optics material	Plastic, PMMA
Enclosure rating	IP67
Ambient operating temperature ${ }^{\text {14) }} 15$ (16)	$\begin{aligned} & -35^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \\ & -35^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \end{aligned}$ (depending on type)
Ambient storage temperature	$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Warm-up time ${ }^{16)}$	$<15 \mathrm{~min}$
Initialization time	$<300 \mathrm{~ms}$

${ }^{1)}$ Limit values. Operated in short-circuit protected network: max. 8 A .
${ }^{2}{ }^{2} \mathrm{~V}_{\mathrm{s}} \mathrm{min}$ at IO-Link operation $=18 \mathrm{~V}$.
${ }^{3)} \mathrm{Vs}$ min when using the voltage output $=13 \mathrm{~V}$.
${ }^{4}$) May not exceed or fall below U_{v} tolerances.
${ }^{5}$) Without load. At $\mathrm{V}_{\mathrm{s}}=24 \mathrm{~V}$.
${ }^{6}$ Q1, Q2 $=2$ switching thresholds, light switching.
${ }^{7}$) $\mathrm{Q} 1=1$ switching threshold, light switching.
${ }^{8)} \mathrm{Q} / \overline{\mathrm{Q}}=1$ switching thresholds, light/dark switching/(complementary).
${ }^{9)}$ Signal transit time with resistive load.
${ }^{10)}$ With light/dark ratio 1:1.
${ }^{11)} \mathrm{A}=\mathrm{V}_{\mathrm{s}}$ connections reverse-polarity protected.
${ }^{12)} B=$ inputs and output reverse-polarity protected.
${ }^{13)} \mathrm{C}=$ interference suppression.
${ }^{14)}$ As of $\mathrm{T}_{\mathrm{a}}=45{ }^{\circ} \mathrm{C}$, a max. load current $\mathrm{I}_{\max }=50 \mathrm{~mA}$ is permitted.
${ }^{15)}$ For $\mathrm{Vs} \leq 24 \mathrm{~V}$. When $\mathrm{Tu}=45^{\circ} \mathrm{C}$ or above, a maximum load resistance of $300 \Omega \ldots 450 \Omega$ is permitted on QA.
${ }^{16)}$ Below $\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ a warm-up time is required.

Fieldbus, industrial network

Fieldbus integration	IO-Link V1.1
Mode	COM $2(38,4 \mathrm{kBaud})$
Cycle time	5 ms
Process data length	32 Bit
Process data structure	Bit $0=$ switching signal Q_{01}
	Bit $1=$ switching signal Qo2
Bit $2 \ldots 8=$ BDC $2 \ldots 8$	
Bit $9 \ldots 15=$ empty	
Bit $16 \ldots 31=$ distance value	

Ordering information

PowerProx Precision Shiny, switching output

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: 50 mm ... 1,400 mm (Object with 6 ... 90% remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {Max. }}: \leq 100 \mathrm{~mA}$

Number of switching outputs	Switching mode	Adjustment	Input	Connection	Connection diagram	Type	Part no.
$2(\mathrm{Q} / \overline{\mathrm{Q}})^{1)}$	Light/dark switching ${ }^{1)}$	Single teach-in button (2 x)	Sender off	Male connector M12, 5-pin	cd-282	WTT12L-B2522	1085283
$2(\mathrm{Q} 1, \mathrm{Q} 2)^{2)}$	Light switching ${ }^{2)}$	Single teach-in button (2 x)	Sender off	Male connector M12, 5-pin	cd-284	WTT12L-B2523	1082417
		Potentiometer, 4 turns (2 x)	Sender off	Male connector M12, 5-pin	cd-284	WTT12L-B2526	1082419

${ }^{1)} \mathrm{Q} / \overline{\mathrm{Q}}=1$ switching thresholds, light/dark switching/(complementary).
${ }^{2}$) Q1, Q2 $=2$ switching thresholds, light switching.

PowerProx Precision Shiny, analog and switching output

- Supply voltage: 12 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.) (Vs min when using the voltage output = 13 V .)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: $50 \mathrm{~mm} . . .1,400 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {max: }}: \leq 50 \mathrm{~mA}$
- Analog output: $4 \mathrm{~mA} . . .20 \mathrm{~mA}(\leq 450 \Omega) / 0 \mathrm{~V} . .10 \mathrm{~V}(\geq 50 \mathrm{k} \Omega)$ / switchable
- Distance value-measuring range: $100 \mathrm{~mm} . . .1,400 \mathrm{~mm}$ (Object with 6 ... 90% remission (based on standard white to DIN 5033).)

Number of switching outputs ${ }^{1)}$	Switching mode ${ }^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no.
1 (Q1)	Light switching	Single teach-in button (2 x)	Sender off	Male connector M12, 5-pin	cd-375	WTT12L-A2523	1082477

${ }^{1)}$ Q1 $=1$ switching threshold, light switching.

PowerProx Precision Shiny, IO-Link

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.) (V_{s} min at IO-Link operation = 18 V .)
- Output type: PUSH/PULL, PNP, NPN
- Sensing range max.: 50 mm ... 1,400 mm (Object with 6 ... 90% remission (based on standard white to DIN 5033).)
- Output current $\mathrm{I}_{\text {max. }}: \leq 100 \mathrm{~mA}$
- Distance value-measuring range: $50 \mathrm{~mm} . . .1,400 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)

Number of switching outputs ${ }^{1)}$	Switching mode ${ }^{1)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no.
2 (Q1, Q2)	Light switching	Single teach-in button (2 x) IO-Link	$\mathrm{MF}_{\text {in }}=$ multifunctional input programmable	Male connector M12, 5-pin	cd-290	WTT12LC-B2523	1082414

[^3]Dimensional drawings (Dimensions in mm (inch))
Switching output and IO-Link

Analog and switching output

[^4]

Connection diagram

Cd-282

Sensing range

Min. distance from object to background in mm (inch)

(1) Sensing range on black, 6\% remission
(2) Sensing range on white, 90% remission

Reproducibility

Cd-290

Cd-375

Light spot size
Radius in mm (inch)

(1) Light spot horizontal
(2) Light spot vertical

[^5]
GREAT SENSING RANGE IN A SMALL PACKAGE

Additional information
Detailed technical data 53
Ordering information 55
Dimensional drawings 57
Connection diagram 59
Scanning range 60
Sensing range 61
Light spot size 61

Product description

The PowerProx Small combines time-offlight technology, sensing ranges up to 3.0 m, and high switching frequencies up to $1,000 \mathrm{~Hz}$ in a small housing. The laser technology is classified as laser class 1, ensuring that there is no danger to eyes during operation. The MultiTask photoelectric sensor is adjusted via potentiometer or display with Teach-in

At a glance

- Time-of-flight technology, laser class 1
- Sensing range for object detection: 20 cm to 3.0 m
- Switching frequency up to $1,000 \mathrm{~Hz}$
- Minimum distance between the object and background: 15 ... 175 mm

Your benefits

- The small housing offers great flexibility in terms of machine design
- Flexible: Sensing ranges from 20 cm to 3.0 m
- Reliable object detection, e.g., even with shiny or jet-black surfaces and background reflections
buttons. There are versions available with either one or two separately adjustable switching thresholds or with analog output, depending on the application. Thanks to its versatile connection options, the PowerProx Small is extremely flexible and can be used in a wide range of different fields.
- Adjustment via potentiometer or display with Teach-in buttons
- 1 or 2 switching points which can be adjusted separately
- Analog output
- Wide range of connection options
- Highly visible light spot simplifies alignment of the photoelectric proximity sensor
- Precise, simple adjustment with potentiometer or display with Teach-in buttons
- Eye-safe thanks to laser class 1

\rightarrow www.sick.com/PowerProx

For more information, simply enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples, and much more.

Detailed technical data

Features

Sensor principle	Photoelectric proximity sensor
Detection principle	Background suppression
Dimensions (Wx H x D)	$17.6 \mathrm{~mm} \times 46.5 \mathrm{~mm} \times 34.1 \mathrm{~mm}$ $17.4 \mathrm{~mm} \times 45.6 \mathrm{~mm} \times 34.7 \mathrm{~mm}$ (depending on type)
Housing design (light emission)	Rectangular
Sensing range max. ${ }^{1)}$	$\begin{aligned} & 200 \mathrm{~mm} \ldots 2,500 \mathrm{~mm} \\ & 200 \mathrm{~mm} \ldots . .3,000 \mathrm{~mm} \\ & \text { (depending on type) } \end{aligned}$
Sensing range ${ }^{2)}$	$\begin{aligned} & 200 \mathrm{~mm} \ldots 2,500 \mathrm{~mm} \\ & 200 \mathrm{~mm} \ldots . .3,000 \mathrm{~mm} \\ & \text { (depending on type) } \end{aligned}$
Distance value-measuring range ${ }^{\text {1) }}$	200 mm ... 3,000 mm
Distance value-resolution	2 mm
Distance value-repeatability ${ }^{\text {3) }}{ }^{4)}$ 5)	$5 \mathrm{~mm} . . .80 \mathrm{~mm}$
Distance value-accuracy	Typ. $\pm 30 \mathrm{~mm}{ }^{6}$, typ. $\pm 50 \mathrm{~mm}{ }^{7}$
Type of light	Visible red light
Light source ${ }^{8)}$	Laser
Light spot size (distance)	Ø $10 \mathrm{~mm}(2,500 \mathrm{~mm})$ $\emptyset 12$ mm (3,000 mm) (depending on type)
Wave length	658 nm
Laser class	1 (IEC 60825-1 / CDRH 21 CFR 1040.10 \& 1040.11)
Adjustment	Potentiometer, 4 turns (1 x) Potentiometer, 4 turns (2 x) Single teach-in button (4x) Display (depending on type)

${ }^{1)}$ Object with $6 \ldots 90$ \% remission (based on standard white to DIN 5033).
${ }^{2)}$ Adjustable.
${ }^{3)}$ Equivalent to 1σ.
${ }^{4}$) See characteristic curves repeatability.
${ }^{5}$) 6%... 90% remission.
${ }^{6} 0.2 \mathrm{~m} . . .2 \mathrm{~m}$.
7) $2 \mathrm{~m} . .3 \mathrm{~m}$.
${ }^{8)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{u}}=+25^{\circ} \mathrm{C}$.

Mechanics/electronics

Supply voltage ${ }^{1)}$	$\begin{aligned} & 10 \mathrm{~V} \text { DC ... } 30 \mathrm{~V} \text { DC } \\ & 12 \mathrm{~V} \text { DC ... } 30 \mathrm{~V} \text { DC } \\ & \text { (depending on type) } \end{aligned}$
Ripple ${ }^{2)}$	$\leq 5 \mathrm{~V}_{\mathrm{pp}}$
Power consumption ${ }^{3}$	$\leq 75 \mathrm{~mA}$
Output type	PNP 4) ${ }^{\text {5) }}$ NPN ${ }^{4)}{ }^{5)}$ PNP/NPN 4) 5) 6) 7) (depending on type)
Number of switching outputs	$\begin{aligned} & 2(\mathrm{Q} 1, \mathrm{Q} 2)^{4} \\ & 1 \text { (Q1) } \\ & 3 \text { (Q1, Q2, Q3) } \\ & \text { (depending on type) } \end{aligned}$
Switching mode ${ }^{\text {4) 5) 7) }}$	Light/dark switching

Switching mode selector	Selectable via light/dark selector / selectable via menu (depending on type)
Output current $\mathrm{I}_{\text {max }}$.	$\leq 100 \mathrm{~mA}$
Response time	$\begin{aligned} & \leq 0.5 \mathrm{~ms}^{8} \text {) } \\ & \leq 0.6 \mathrm{~ms}, \leq 1 \mathrm{~ms}, \leq 3.4 \mathrm{~ms}, \leq 13 \mathrm{~ms}, \leq 51.4 \mathrm{~ms}^{8)}{ }^{\text {9) }} 10 \text {) } \\ & \text { (depending on type) } \end{aligned}$
Switching frequency ${ }^{11)}$ $\begin{aligned} \leq 0.6 \mathrm{~ms}, \leq 1 \mathrm{~ms}, \leq 3.4 \mathrm{~ms}, \leq 13 \mathrm{~ms}, & \leq 51.4 \mathrm{~ms} \\ & \leq 0.5 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \left.833 \mathrm{~Hz}, 500 \mathrm{~Hz}, 147 \mathrm{~Hz}, 38 \mathrm{~Hz}, 10 \mathrm{~Hz}{ }^{910}\right) \\ & 1,000 \mathrm{~Hz} \end{aligned}$
Resolution of analog output	10 bit
Output time ${ }^{\text {9) } 10)}$	$0.6 \mathrm{~ms}, 1 \mathrm{~ms}, 3.4 \mathrm{~ms}, 13 \mathrm{~ms}, 51.4 \mathrm{~ms}$
Input	$M F_{\text {in }}=$ multifunctional input programmable ${ }^{12 \text {) }}$ Sender off (depending on type)
Connection type	Cable with male connector, M12, $0.3 \mathrm{~m}^{13)}$ Male connector, M8 Cable, $2 \mathrm{~m}^{13)}$ (depending on type)
Circuit protection	$A^{14)}$ B ${ }^{15)}$ C ${ }^{16)}$
Protection class	III
Weight Cable with plug M12, 5-pin Connector M8, 4-pin Cable, 5 -wire Cable, 4-wire	$\begin{aligned} & 45 \mathrm{~g} \\ & 25 \mathrm{~g} \\ & 85 \mathrm{~g} \\ & 80 \mathrm{~g} \end{aligned}$
Housing material	ABS
Optics material	Plastic, PMMA
Enclosure rating	IP67
Items supplied	BEF-W190 mounting bracket
Ambient operating temperature	$\begin{aligned} & -10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \\ & -30^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}{ }^{17 \text {) }} \\ & \text { (depending on type) } \end{aligned}$
Ambient storage temperature	$-40^{\circ} \mathrm{C} \ldots+70{ }^{\circ} \mathrm{C}$
Warm-up time ${ }^{18)}$	$<5 \mathrm{~min}$
Initialization time	$<300 \mathrm{~ms}$

${ }^{1)}$ Limit values. Operated in short-circuit protected network: max. 8 A .
${ }^{2)}$ May not exceed or fall below U_{v} tolerances.
${ }^{3}$) Without load. At $\mathrm{V}_{\mathrm{S}}=24 \mathrm{~V}$.
${ }^{4)}$ Q1, Q2 $=2$ switching thresholds, light/dark switching selectable via light/dark selector.
${ }^{5)}$ Q1 = 1 switching threshold, light/dark switching selectable via light/dark selector.
${ }^{6}$) PNP/NPN switchable.
${ }^{7}$) Q1, Q2, Q3 = 3 switching thresholds, light/dark switching selectable via light/dark selector.
${ }^{8)}$ Signal transit time with resistive load.
${ }^{9)}$ Can be set via a mean value filter (AVG1, AVG4, AVG16, AVG64, AVG256).
${ }^{10}$) Depending on distance to object, distance to background and selected switching threshold.
${ }^{11)}$ With light/dark ratio 1:1.
${ }^{12)}$ External teach-in via cable, laser shutdown.
${ }^{13)}$ Do not bend below $0{ }^{\circ} \mathrm{C}$.
${ }^{14)} \mathrm{A}=\mathrm{V}_{\text {s }}$ connections reverse-polarity protected.
${ }^{15)} B=$ inputs and output reverse-polarity protected.
${ }^{16)} \mathrm{C}=$ interference suppression.
${ }^{17)}$ Vs $\geq 24 \mathrm{~V}$. Below $\mathrm{Ta}<-10^{\circ} \mathrm{C}$ warm-up time $<10 \mathrm{~min}$.
${ }^{18)}$ For best performance consider warm up time ≤ 5 minutes.

Ordering information

PowerProx Small, switching output, adjustment via potentiometer

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A .)
- Sensing range max.: $200 \mathrm{~mm} . . .2,500 \mathrm{~mm}$ (Object with 6 ... 90% remission (based on standard white to DIN 5033).)
- Response time: $\leq 0.5 \mathrm{~ms}$ (Signal transit time with resistive load.)
- Light spot size (distance): $\varnothing 10 \mathrm{~mm}(2,500 \mathrm{~mm})$
- Output current $\mathrm{I}_{\text {max. }}: \leq 100 \mathrm{~mA}$

Number of switching outputs	Switching mode	Adjustment	Input	Output type	Connection	Connection diagram	Type	Part no.
$1(\mathrm{Q} 1)^{1)}$	Light/dark switching ${ }^{1)}$	Potentiometer, 4 turns (1 x)	Sender off	NPN	Cable with plug M12, 5-pin, 0.3 m , PVC	cd-294	WTT190L-N3531	6055961
				PNP	Cable with plug M12, 5-pin, 0.3 m , PVC	cd-294	WTT190L-P3531	6055955
				NPN	Cable, 4-wire, 2 m, PVC	cd-293	WTT190L-N1131	6055960
				PNP	Cable, 4-wire, 2 m, PVC	cd-293	WTT190L-P1131	6055954
				NPN	Connector M8, 4-pin	cd-292	WTT190L-N2231	6055959
				PNP	Connector M8, 4-pin	cd-292	WTT190L-P2231	6055953
$2(\mathrm{Q} 1, \mathrm{Q} 2)^{\text {2) }}$	Light/dark switching ${ }^{2)}$	Potentiometer, 4 turns (2 x)	-	NPN	Connector M8, 4-pin	cd-296	WTT190L-N2236	6055962
				PNP	Connector M8, 4-pin	cd-296	WTT190L-P2236	6055956
			Sender off	NPN	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-284	WTT190L-N3536	6055964
				PNP	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-284	WTT190L-P3536	6055958
				NPN	Cable, 5-wire, 2 m, PVC	cd-285	WTT190L-N1536	6055963
				PNP	Cable, 5-wire, 2 m, PVC	cd-285	WTT190L-P1536	6055957

${ }^{1)}$ Q1 = 1 switching threshold, light/dark switching selectable via light/dark selector.
${ }^{2}$) Q1, Q2 $=2$ switching thresholds, light/dark switching selectable via light/dark selector.

PowerProx Small, switching output, adjustment via teach-in

- Supply voltage: 10 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A .)
- Sensing range max.: $200 \mathrm{~mm} . . .3,000 \mathrm{~mm}$ (Object with 6 ... 90% remission (based on standard white to DIN 5033).)
- Response time: $\leq 0.6 \mathrm{~ms}, \leq 1 \mathrm{~ms}, \leq 3.4 \mathrm{~ms}, \leq 13 \mathrm{~ms}, \leq 51.4 \mathrm{~ms}{ }^{1)}{ }^{2)}$ 3)
- Light spot size (distance): $\varnothing 12 \mathrm{~mm}(3,000 \mathrm{~mm})$
- Output current $\mathrm{I}_{\text {max }:}$: 100 mA
- Output type: PNP, NPN

Number of switching outputs	Switching mode	Adjustment	Input	Connection	Connection diagram	Type	Part no.
$2(\mathrm{Q} 1, \mathrm{Q} 2){ }^{4}$	Light/dark switching ${ }^{4)}$	Single teach-in button (4 x) Display	$\mathrm{MF}_{\text {in }}=\text { multi }-$ functional input programmable	Connector M8, 4-pin	cd-369	WTT190L-K2233	6062141
3 (Q1, Q2, Q3) ${ }^{\text {5 }}$	Light/dark switching ${ }^{5)}$	Single teach-in button (4 x) Display		Cable with plug M12, 5-pin, 0.3 m, PVC	cd-371	WTT190L-K3534	6062143
				Cable, 5-wire, 2 m, PVC	cd-370	WTT190L-K1534	6062142

${ }^{1)}$ Signal transit time with resistive load.
${ }^{2}$) Can be set via a mean value filter (AVG1, AVG4, AVG16, AVG64, AVG256).
${ }^{3}$) Depending on distance to object, distance to background and selected switching threshold.
${ }^{4}$) Q1, Q2 $=2$ switching thresholds, light/dark switching selectable via light/dark selector.
${ }^{5}$) Q1, Q2, Q3 $=3$ switching thresholds, light/dark switching selectable via light/dark selector.

PowerProx Small, analog and switching output, adjustment via teach-in

- Supply voltage: 12 V DC ... 30 V DC (Limit values. Operated in short-circuit protected network: max. 8 A.)
- Sensing range max.: $200 \mathrm{~mm} . .3,000 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)
- Response time: $\leq 0.6 \mathrm{~ms}, \leq 1 \mathrm{~ms}, \leq 3.4 \mathrm{~ms}, \leq 13 \mathrm{~ms}, \leq 51.4 \mathrm{~ms}^{1)^{2)}{ }^{3)}}$
- Light spot size (distance): $\varnothing 12 \mathrm{~mm}(3,000 \mathrm{~mm})$
- Output current $\mathrm{I}_{\text {max }}$: $\leq 100 \mathrm{~mA}$
- Distance value-measuring range: $200 \mathrm{~mm} . . .3,000 \mathrm{~mm}$ (Object with $6 \ldots 90 \%$ remission (based on standard white to DIN 5033).)
- Output type: PNP, NPN switchable

Number of switching outputs ${ }^{4)}$	Switching mode ${ }^{4)}$	Adjustment	Input	Connection	Connection diagram	Type	Part no.
1 (Q1)	Light/dark switching	Single teach-in button (4 x) Display	$\mathrm{MF}_{\text {in }}=\text { multi }-$ functional input programmable	Cable with plug M12, 5-pin, 0.3 m, PVC	cd-374	WTT190L-A3532	6062146
				Cable, 5-wire, 2 m, PVC	cd-373	WTT190L-A1532	6062145
				Connector M8, 4-pin	cd-372	WTT190L-A2232	6062144

[^6]Dimensional drawings (Dimensions in mm (inch))
Switching output, adjustment via potentiometer

(1) Status indicator LED, yellow: Status of output Q1
(2) Status indicator LED, green/red: power on / stability indicator
(3) Status indicator LED, yellow: Status of output Q2
(4) Potentiometer
(5) Potentiometer
(6) Optical axis receiver
(7) Optical axis sender
(8) Light/dark selector
(9) Connection

Switching output, adjustment via potentiometer

[^7]Switching output, adjustment via teach-in

(1) Receiver
(2) Sender
(3) Connection
(4) RUN button
(5) (+/Q2) button
(6) Status indicator orange: Q2 output indicator
(7) Status indicator LED, green/red/orange: power on / stability indicator / Q3 output indicator
(8) Status indicator orange: Q1 output indicator
(9) (-/Q1) button
(10) Display
(II) SET button

Switching output, adjustment via teach-in

(1) Receiver
(2) Sender
(3) Connection
(4) RUN button
(5) (+) button
(6) Status indicator orange: output indicator
(7) Status indicator LED, green/red/off: power on / stability indicator / laser off
(8) Status indicator orange: output indicator
(9) (-/Q1) button
(10) Display
(II) SET button

Analog and switching output，adjustment via teach－in

（1）Receiver	（7）Status indicator LED，green／red／off：power on／
stability indicator／laser off	
（2）Sender	（8）Status indicator orange：Q1 output indicator
（3）Connection	（9）$(-/$ Q1）button
（4）RUN button	（10）Display
（5）$)+$ button	（11）SET button
（6）Status indicator orange：Q1 output indicator	

Connection diagram

Cd－284	Cd－285	Cd－292	Cd－293	
$-\frac{\operatorname{brn}!1}{1}+(L+)$			$-\quad-\quad \mathrm{b} \overline{7}_{i}$	＋（L＋）
$\rightarrow \text { wht }_{1}^{1} \underline{2} Q_{2}$	$\rightarrow \mathrm{wht}_{\mathrm{i}}^{\mathrm{I}} \mathrm{Q}_{2}$	whti $\frac{2}{2}$ Sender off	－grai	Sender off
blui 3 －${ }^{\text {（M）}}$	blui－（M）	blu！ 3 －（M）		
blk！ 4	${ }_{\text {blk }} \mathrm{i}$－（M）	${ }^{1 / 4} 4$		
\checkmark blk！${ }^{\text {a }}$ Q	$\rightarrow \stackrel{\text { blk }}{\text { ！}}$ ， Q_{1}	\rightarrow blki ${ }^{4} \mathrm{Q}_{1}$	blki	Q1
¢grai 5 Sender off	$\xrightarrow[\text { graj Sender off }]{ }$	－．－．」	－－．」	
，Sender ofr	－－．${ }^{\text {－}}$ S			
Cd－294	Cd－296	Cd－372	Cd－373	
－brn 1	－bin； 1	－bin 1	－bin？	
1－$+(L+)$	＋1＋（L＋）	$4+$＋（L＋）	4	＋（L＋）
wht；$\underline{\underline{2}}$ not connected	\rightarrow wht ${ }^{2} \mathrm{Q}_{2}$	\rightarrow wht ${ }^{2} \mathrm{Q}_{\mathrm{a}}$	whti	Qa
blui 3 －（M）	blu！ 3 －（M）	blu！$\underline{3}^{\text {a }}$－（M）	blul	－（M）
bik！ 4	blk 4 －（M）	1ki 4		
－ L_{1}	$\rightarrow \mathrm{Cl}_{1} \mathrm{Q}_{1}$	\rightarrow Q1／MFin	\rightarrow ；	Q1
${ }_{4}^{\text {graj } 5}$ Sender off	－－．」	－－．${ }^{\text {－}}$	$\overbrace{\text { graj }}$	MFin
－－－．j			－－．」	
Cd－374	Cd－370	Cd－371	Cd－369	
$-\operatorname{born} \frac{1}{1}+(L+)$	－－－brn？$+(\mathrm{L}+$ ）		－－bri	＋（L＋）
\rightarrow whti $\frac{2}{} Q_{a}$	\rightarrow whti＿Q2	\rightarrow wht $\frac{2}{2}$ Q2	$\rightarrow \stackrel{\text { whti }}{ }$	Q2／MFin
blul 3 －（M）	blul	blui 3 －（M）		
blk！ 4 －（M）		bik ${ }^{4}$		
1－Q1	！Q1	\rightarrow－Q1		1
${ }_{4}^{\text {graj }}$ 5 $\mathrm{MF}_{\text {in }}$	$\rightarrow \stackrel{\text { graj }}{\sim}$ Q3／MFin	\rightarrow graj 5 Q3／MF ${ }_{\text {in }}$	－．－．	
．－．」	－－－．」	－．」		

Scanning range

Switching output, adjustment via teach-in Analog and switching output, adjustment via teach-in

Min. distance from object to background in mm (inch)

(1) $6 \% / 90 \%$ AVG1
(2) $6 \% / 90 \%$ AVG4
(3) $6 \% / 90 \%$ AVG16
(4) $6 \% / 90 \%$ AVG64
(5) $6 \% / 90 \%$ AVG256

Switching output, adjustment via potentiometer
Min. distance object to background in mm (inch)

[^8](2) Sensing range on white, 90% remission

Switching output, adjustment via teach-in Analog and switching output, adjustment via teach-in

Min. distance from object to background in mm (inch)

[^9]Sensing range
Analog and switching output, adjustment via teach-in
Reproducibility in mm (inch)

(1) 6% AVG1
(2) 6% AVG4
(3) 6% AVG16
(4) 6% AVG64
(5) 6% AVG256

Light spot size

Switching output, adjustment via potentiometer

Radius mm (inch)

Analog and switching output, adjustment via teach-in
Reproducibility in mm (inch)

(1) 90% AVG1
(2) 90% AVG4
(3) 90% AVG16
(4) 90% AVG64
(5) 90% AVG256

Switching output, adjustment via teach-in Analog and switching output, adjustment via teach-in

Radius mm (inch)

NEVER BEFORE HAS BIG PERFORMANCE BEEN SO SMALL

Product description

The PowerProx Micro, with its fin-gertip-sized housing, is the smallest MultiTask photoelectric sensor with time-of-flight technology worldwide and is well-suited for use in cramped conditions. With its large sensing range of 800 mm , it is impressive in relation to

At a glance

- Miniature design 7.7×27.5 x 13.5 mm
- Scanning ranges up to 800 mm
- Time-of-flight technology

Your benefits

- The extremely small design with scanning ranges of up to 800 mm opens new opportunities in machine design
- Easy and precise sensor setting with standard teach-in procedure from SICK
its very small design. Thanks to the single teach-in button, the sensing range can be set quickly, easily and precisely. With its rugged housing and soft cable entry, the sensor is equipped for reliable use in industrial settings.
- Laser class 1 and therefore eye-safe
- High availability and long-term use in grippers thanks to soft, durable cable entry and rugged housing

[^10]For more information, simply enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples, and much more.

- Infrared light
- Laser class 1
- Single teach-in button

Detailed technical data

Features

Sensor principle	Photoelectric proximity sensor
Detection principle	Background suppression
Dimensions (W x H x D)	$7.7 \mathrm{~mm} \times 27.5 \mathrm{~mm} \times 13.5 \mathrm{~mm}$
Housing design (light emission)	Rectangular
Sensing range max. ${ }^{\text {1) }}$	$50 \mathrm{~mm} \ldots 800 \mathrm{~mm}$
Sensing range ${ }^{\text {1) }}$	$50 \mathrm{~mm} \ldots 800 \mathrm{~mm}$
Type of light	Infrared light
Light source ${ }^{2)}$	Laser
Light spot size (distance)	$\emptyset 10 \mathrm{~mm}(300 \mathrm{~mm})$
Wave length	940 nm
Laser class	I
Adjustment ${ }^{\text {3) }}$	Single teach-in button

${ }^{1)}$ Object with 6 ... 90 \% remission (based on standard white to DIN 5033).
${ }^{2)}$ Average service life: $50,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{u}}=+25^{\circ} \mathrm{C}$.
${ }^{3}$) Teach-Offset 15 mm .

Mechanics/electronics

Supply voltage ${ }^{1)}$	10 V DC ... 30 V DC
Ripple ${ }^{2)}$	$\leq 5 \mathrm{~V}_{\mathrm{pp}}$
Power consumption ${ }^{3)}$	$\leq 20 \mathrm{~mA}$
Output type	NPN ${ }^{4)}$ PNP (depending on type)
Switching mode	Light/dark switching
Output current $\mathrm{I}_{\text {max }}$.	< 50 mA
Response time ${ }^{5}$	Typ. 90 ms
Switching frequency ${ }^{6}$	5 Hz
Connection type ${ }^{7}$	Cable, 2 m Cable with male connector, M8, 200 mm (depending on type)
Circuit protection	$\begin{aligned} & A^{8)} \\ & B^{9)} \\ & D^{10)} \end{aligned}$
Protection class	III
Housing material	MABS, ABS
Optics material	Plastic, PMMA
Enclosure rating	IP67
Ambient operating temperature	$-25^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Ambient storage temperature	$-40^{\circ} \mathrm{C} \ldots+75{ }^{\circ} \mathrm{C}$

[^11]
Ordering information

PowerProx Micro, adjustable

- Sensor principle: Photoelectric proximity sensor
- Voltage type: DC
- Sensing range max.: 50 mm ... 800 mm (Object with 6 ... 90% remission (based on standard white to DIN 5033).)
- Light spot size (distance): $\varnothing 10 \mathrm{~mm}$ (300 mm)
- Output current $\mathrm{I}_{\text {мах: }}$ < 50 mA

Switching mode	Adjustment ${ }^{1)}$	Connection	Connection diagram	Type	Part no.
Light/dark switching	Single teach-in button	Cable with M8 male connector, 4-pin, 200 mm , PVC	cd-083	WTT2SL-2P3292	1085602
		Cable, 4-wire, 2 m, PVC	cd-083	WTT2SL-2N1192	1085601

${ }^{1)}$ Teach-Offset 15 mm .

Dimensional drawings (Dimensions in mm (inch))

(9)

(1) Optical axis receiver
(2) Optical axis sender
(3) Mounting hole, $\varnothing 3.2 \mathrm{~mm}$
(4) Connection
(5) LED indicator green: Supply voltage active
(6) LED indicator yellow: Status of received light beam
(7) Cable
(8) Single teach-in button
(9) Cable with connector M8

Connection diagram

Cd-083
$-\overline{-\quad n_{i}} \frac{1}{+}+(+)$
$\rightarrow \begin{aligned} & \text { whti! } \frac{2}{\text { b }} \\ & \text { blu! } \frac{3}{-}-(M)\end{aligned}$
$\rightarrow \underset{-\rightarrow .}{\rightarrow \text { blki }_{i}} \frac{4}{Q}$

Sensing range
Min. distance from object to background in mm (inch)

(1) Sensing range on white, 90% remission
(2) Sensing range on black, 6\% remission

LASER CLASS 1 PHOTOELECTRIC PROXIMITY SENSORS - GREAT PERFORMANCE, SIMPLE OPERATION

Product description

The powerful photoelectric proximity sensor W280L-2 Long Range is characterized by its maximum sensing distance of up to 4 m combined with extremely simple operation. The sensing distance can be further extended to 18 m with the WLT280L-2 Long Range reflector version. The option of 2 independant switching outputs allows feedback of low and high detection points. Setup is easy through an intuitive sensing range adjustment potentiometer and

At a glance

- WTT280L-2 Long Range: sensing distance up to 4 m
- WLT280L-2 Long Range on reflector: sensing distance up to 18 m
- Complete background suppression: very small black/white shift, insensitive against reflections from the background (e.g. shiny metal, window, safety vest)

Your benefits

- Reliable target detection with difficult target colors, angles and color transitions (black/white shift)
- One sensor with two outputs and two status LEDs improves application flexibility and reduces the number of sensors needed
indicator LED for each switching output. A visible red class 1 laser light ensures that the alignment is quick and precise. An integrated protective system in the W280L-2 Long Range prevents adverse effects caused by reflections in the background, for example, resulting from reflective metal surfaces, windows and warning vests. Additionally, the W280L-2 Long Range ignores cross-talk from an adjacent sensor.
- Visible red class 1 laser light
- Version 1: with $1 \times$ switching output and light/dark switch, version 2 : with 2 x switching outputs and light/dark switch
- Disable laser by wire
- Reliable detection also in very fast production processes thanks to the switching frequency of 1000 Hz
- Quick and easy comissioning with sensing distance adjustment potentiometers and status LED - one for each output
- Quick and easy alignment with a red class 1 laser light
- Rotatable connector and light/dark switch for mounting and installation flexibility
Additional information
Detailed technical data 67
Ordering information 68
Dimensional drawing 69
Adjustments 70
Connection type 70
Connection diagram 70
Sensing range 71

[^12]

Detailed technical data

Features

	WTT280L-2 Long Range	WLT280L-2 Long Range
Sensor principle	Photoelectric proximity sensor	
Detection principle	Background suppression	
Dimensions (W x H x D)	$23.5 \mathrm{~mm} \times 76 \mathrm{~mm} \times 55.8 \mathrm{~mm}$	
Housing design (light emission)	Rectangular	
Sensing range max.	$\begin{aligned} & 200 \mathrm{~mm} \ldots 4,000 \mathrm{~mm}^{1)} \\ & 200 \mathrm{~mm} \ldots 3,000 \mathrm{~mm}^{2)} \end{aligned}$	$200 \mathrm{~mm} \ldots 18,000 \mathrm{~mm}^{3)}$
Sensing range ${ }^{4)}$	$\begin{aligned} & 200 \mathrm{~mm} \ldots 4,000 \mathrm{~mm}^{1)} \\ & 200 \mathrm{~mm} \ldots 3,000 \mathrm{~mm}^{2)} \end{aligned}$	$200 \mathrm{~mm} . . .18,000 \mathrm{~mm}^{3)}$
Type of light	Visible red light	
Light source ${ }^{5}$	Laser	
Light spot size (distance)	$\emptyset 12 \mathrm{~mm}$ (3 m)	$\emptyset 50 \mathrm{~mm}(18 \mathrm{~m})$
Laser class	1 (EN 60825-1:2008-5, IEC 60825-1:2007-03)	
Adjustment	Potentiometer (2 x) Potentiometer (1x) (depending on type)	Potentiometer (2x)

${ }^{1)}$ Object with 90% reflectance (referred to standard white, DIN 5033).
${ }^{2)}$ Objects to be sensed with 6% reflectivity (based on black).
${ }^{3}$) Reflector P250, PL80A.
Einstellbar.
${ }^{5)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{u}}=+25^{\circ} \mathrm{C}$.

Mechanics/electronics

	WTT280L-2 Long Range	WLT280L-2 Long Range
Supply voltage ${ }^{1)}$	10 V DC ... 30 V DC	
Ripple ${ }^{2)}$	$\leq 3 \mathrm{~V}_{\mathrm{p}}$	
Power consumption ${ }^{3}$	$\leq 70 \mathrm{~mA}$	
Output type	NPN PNP (depending on type)	
Number of switching outputs	$\begin{aligned} & 2(\mathrm{Q} 1, \mathrm{Q} 2)^{4)} \\ & 1 \text { (Q1) }{ }^{5} \\ & \text { (depending on type) } \end{aligned}$	$2(\mathrm{Q} 1, \mathrm{Q} 2){ }^{4)}$
Switching mode	Light/dark switching	
Switching mode selector	Selectable via light/dark rotary switch	
Output current $\mathrm{I}_{\text {max }}$.	$\leq 100 \mathrm{~mA}$	
Response time ${ }^{6)}$	$\leq 0.5 \mathrm{~ms}$	$\leq 2 \mathrm{~ms}$
Switching frequency ${ }^{7}$	$1,000 \mathrm{~Hz}$	$\pm 250 \mathrm{~Hz}$
Input	Sender off	
Connection type	Male connector, M12 Cable, $2 \mathrm{~m}^{8)}$ (depending on type)	
Circuit protection	A^{9} B ${ }^{10)}$ C ${ }^{11)}$ D ${ }^{12)}$	
Protection class	III	
Weight	120 g	
Housing material	ABS	

	WTT280L-2 Long Range	
Optics material	Plastic, PMMA	WLT280L-2 Long Range
Enclosure rating	IP67	
Items supplied	Mounting bracket BEF-W280	Mounting bracket BEF-W280, Reflector P250
EMC	EN $60947-5-2$	
Ambient operating temperature	$-10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$	
Ambient storage temperature	$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$	

${ }^{1)}$ Limit values. Operated in short-circuit protected network: max. 8 A .
${ }^{2)}$ May not exceed or fall below U_{v} tolerances.
${ }^{3}$) Without load.
${ }^{4}$) Q1, Q2 $=2$ switching thresholds, light/dark switching selectable via light/dark selector.
${ }^{5)}$ Q1 = 1 switching threshold, light/dark switching selectable via light/dark selector.
${ }^{6}$) Signal transit time with resistive load.
${ }^{7}$) With light/dark ratio 1:1.
${ }^{8)}$ Do not bend below $0{ }^{\circ} \mathrm{C}$.
${ }^{9)} \mathrm{A}=\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected.
${ }^{10)} B=$ output reverse-polarity protected.
${ }^{11)} \mathrm{C}=$ interference suppression.
${ }^{12)} \mathrm{D}=$ outputs overcurrent and short-circuit protected.

Ordering information

WTT280L-2 Long Range

- Sensor principle: Photoelectric proximity sensor
- Voltage type: DC
- Sensing range max.: $200 \mathrm{~mm} . . .4,000 \mathrm{~mm}$ (Object with 90% reflectance (referred to standard white, DIN 5033).), $200 \mathrm{~mm} . . .3,000 \mathrm{~mm}$ (Objects to be sensed with 6% reflectivity (based on black).)
- Light spot size (distance): $\varnothing 12 \mathrm{~mm}$ (3 m)
- Input: Sender off

Number of switching outputs	Switching mode	Adjustment	Connection	Output type	Connection diagram	Type	Part no.
$2(\mathrm{Q} 1, \mathrm{Q} 2)^{\text {1) }}$	Light/dark switching	Potentiometer$(2 x)$	Male connector M12, 5-pin	NPN	cd-211	WTT280L-2N2536	6048064
				PNP	cd-211	WTT280L-2P2536	6048062
			Cable, 5-wire, 2 m, PVC	NPN	cd-208	WTT280L-2N1536	6048068
				PNP	cd-208	WTT280L-2P1536	6048066
$1(\mathrm{Q} 1)^{2)}$	Light/dark switching	Potentiometer$(1 x)$	Male connector M12, 5-pin	NPN	cd-210	WTT280L-2N2531	6048063
				PNP	cd-210	WTT280L-2P2531	6048061
			Cable, 5-wire, 2 m, PVC	NPN	cd-209	WTT280L-2N1531	6048067
				PNP	cd-209	WTT280L-2P1531	6048065

[^13]
WLT280L-2 Long Range

- Sensor principle: Photoelectric proximity sensor
- Voltage type: DC
- Sensing range max.: $200 \mathrm{~mm} . . .18,000 \mathrm{~mm}$ (Reflector P250, PL80A.)
- Light spot size (distance): $\varnothing 50 \mathrm{~mm}$ (18 m)
- Input: Sender off

Number of switching outputs ${ }^{1)}$	Switching mode	Adjustment	Connection	Output type	Connection diagram	Type	Part no.
2 (Q1, Q2)	Light/dark switching	Potentiometer (2 x)	Male connector M12, 5-pin	NPN	cd-211	WLT280L-2N2536	6048070
				PNP	cd-211	WLT280L-2P2536	6048069
			Cable, 5-wire, 2 m, PVC	NPN	cd-208	WLT280L-2N1536	6048072
				PNP	cd-208	WLT280L-2P1536	6048071

${ }^{1)}$ Q1, Q2 = 2 switching thresholds, light/dark switching selectable via light/dark selector.

Dimensional drawing (Dimensions in mm (inch))

[^14]Adjustments
WxT280L-2xxxx6

(6) LED indicator green: Stability indicator
(7) Status indicator LED, yellow: Status of received light beam (switching output 1)
(8) Status indicator LED, yellow: Status of received light beam (switching output 2)
(9) Sensing range adjustment: potentiometer for switching output 1
(10) Sensing range adjustment: potentiometer for switching output 2
(11) Light/dark selector

WTT280L-2xxxx1

(6) LED indicator green: Stability indicator
(7) LED indicator yellow: Status of received light beam
(9) Sensing range adjustment: potentiometer
(II) Light/dark selector

Connection type
WTT280L-2x25xx
WLT280L-2x25xx

Cd-210

WTT280L-2x15xx
WLT280L-2x15xx

Cd-209

Sensing range

(1) Sensing range on black, 6% remission
(2) Sensing range on gray, 18% remission
(3) Sensing range on white, 90\% remission

Sensing range max.
(1) Sensing range on black, 6% remission
(2) Sensing range on gray, 18% remission
(3) Sensing range on white, 90% remission

PowerProx

Mounting systems

Universal bar clamp systems

Mounting brackets and plates

Terminal and alignment brackets

Figure	Material	Description	Type	Part no.							
$\begin{gathered} = \\ -1 \\ 4 \end{gathered}$	Aluminum (anodised)	Clamping block for dovetail mounting	BEF-KH-WTT12L	2080772	-	-	-	-	-	-	-

Connection systems

Modules and gateways
Cloning module

Figure	Brief description	Type	Part no.							
	IO-Link version V1.1, Port class 2, PIN 2, 4, 5 galvanically connected, Supply voltage 18 V DC ... 32 V DC (limit values, operation in short-circuit protected network max. 8A)	IOLP2ZZ-M3201 (SICK Memory Stick)	1064290	-	-	-	-	-	-	-

Connection modules

Figure	Brief description	Type	Part no.							0 0 0 \sim \sim 00 0 0 \sim 1 0 0 0 \vdots 3
	IO-Link V1.1 Class A port, USB2.0 port, optional external power supply $24 \mathrm{~V} / 1 \mathrm{~A}$	IOLA2US-01101 (SiLink2 Master)	1061790	\bigcirc	-	\bigcirc	-	-	-	-

Fieldbus modules

Plug connectors and cables
Connecting cables with female connector M12, 5-pin, PVC, chemical resistant

- Cable material: PVC
- Connector material: TPU
- Locking nut material: CuZn, nickel-plated brass

Figure	Connection type head A	Connection type head B	Connecting cable	Type	Part no.							WLT280L-2 Long Range
	Female connector, M12, 5-pin, straight, unshielded	Cable, Flying leads	$2 \mathrm{~m}, 5$-wire	DOL-1205-G02M	6008899	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
			$5 \mathrm{~m}, 5$-wire	DOL-1205-G05M	6009868				\bigcirc	-	\bigcirc	\bigcirc
			$10 \mathrm{~m}, 5$-wire	DOL-1205-G10M	6010544					-	-	\bigcirc
			$15 \mathrm{~m}, 5$-wire	DOL-1205-G15M	6029215				\bigcirc	-	-	\bigcirc
	Female connector, M12, 5-pin, angled, unshielded	Cable, Flying leads	$2 \mathrm{~m}, 5$-wire	DOL-1205-W02M	6008900		\bigcirc		-	-	,	\bigcirc
			$5 \mathrm{~m}, 5$-wire	DOL-1205-W05M	6009869	\bigcirc	-		-	-	\bigcirc	\bigcirc

Connecting cables with female connector M8, 4-pin, PVC, chemical resistant

- Cable material: PVC
- Locking nut material: CuZn, nickel-plated brass

Figure	Connection type head A	Connection type head B	Connecting cable	Connector material	Type	Part no.					$\begin{aligned} & \text { O} \\ & \sum_{x}^{\circ} \\ & \text { o } \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$		
	Female connector,	Cable, Flying leads	$2 \mathrm{~m}, 4$-wire	TPU	DOL-0804-G02M	6009870	-	-	-	\bigcirc	\bigcirc	-	-
	M8, 4-pin, straight, unshielded		$5 \mathrm{~m}, 4$-wire	TPU	DOL-0804-G05M	6009872	-	-	-	-	\bigcirc	-	-
	Female connector,	Cable, Flying leads	$2 \mathrm{~m}, 4$-wire	PVC	DOL-0804-W02M	6009871	-	-	-	\bigcirc	\bigcirc	-	-
	M8, 4-pin, angled, unshielded		$5 \mathrm{~m}, 4$-wire	PVC	D0L-0804-W05M	6009873	-	-	-	-	\bigcirc	-	-

Connection cables with female connector and male connector M12, 5-pin, PUR, halogen-free, Oil / grease resistant, digital I/Os

- Cable material: PUR, halogen-free
- Connector material: TPU
- Locking nut material: zinc die-cast, nickel-plated

Figure	Connection type head A	Connection type head B	Connecting cable	Type	Part no.					을 슨 은 0.0 0.		WLT280L-2 Long Range
	Female connec-	ale connector,	2 m, 5-wire	DSL-1205-G02MC	6025931	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-		-
	straight, A-coded, unshielded	M12, 5-pin, straight, A-coded	5 m, 5-wire	DSL-1205-G05MC	6029282		-	-	-	-		-

Connection cables with female connector and male connector M8, 4-pin, PUR, halogen-free, Oil / grease resistant

- Cable material: PUR, halogen-free
- Connector material: TPU
- Locking nut material: zinc die-cast, nickel-plated

Figure	Connection type head A	Connection type head B	Connecting cable	Type	Part no.							
	Female connector, M8,	Male connec-	$2 \mathrm{~m}, 4$-wire	DSL-0804-G02MC	6036335	-	-	-		\bigcirc	-	-
	4-pin, straight, unshielded	tor, M8, 4-pin, straight	$5 \mathrm{~m}, 4$-wire	DSL-0804-G05MC	6039090	-	-	-		-	-	-

Female connectors (ready to assemble) M12, 5-pin

- Locking nut material: CuZn

Female connectors (ready to assemble) M8, 4-pin

- Locking nut material: CuZn

Figure	Connection type head A	Connection type head B	Connector material	Type	Part no.							
	Female connector, M8, 4-pin, straight, unshielded	-, screw-type terminals	PBT/PA	DOS-0804-G	6009974	-	-	-	-	\bullet	-	-
	Female connector, M8, 4-pin, angled, unshielded	-, solder connection	PA/Zinc diecast	DOS-0804-W	6009975	-	-	-	-	-	-	-

Reflectors and optics

Reflectors
Fine triple reflectors

Reflective tape

Reflectors and optics

Optics cloths

Figure	Description	Type	Part no.					을 츤 은 0. 0.		
$=-1$	Cloth for cleaning the front screen	Lens cloth	4003353	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		-

Further accessories
Cleaning agent

Alignment aids

Figure	Description	Type	Part no.							
	IR radiation is converted into a visible orange glow within the active area	Infrared conversion screen WTT2SL	8020880	-	-	-	-	\bigcirc	-	-

Dimensional drawings Mounting systems
BEF-KHS-NO4
BEF-KHS-NO4N

BEF-KHS-NO2

BEF-KHS-NO3

BEF-MS12Z-A
BEF-MS12Z-B

BEF-MS12Z-(N)A: $A=150 \mathrm{~mm}, B=70 \mathrm{~mm}, \mathrm{C}=150 \mathrm{~mm}$ BEF-MS12Z-(N)B: $A=150 \mathrm{~mm}, B=70 \mathrm{~mm}, C=250 \mathrm{~mm}$

BEF-MS12L-A
BEF-MS12L-B

BEF-MS12L-(N)A: $A=200 \mathrm{~mm}, B=150 \mathrm{~mm}$ BEF-MS12L-(N)B: $A=250 \mathrm{~mm}, B=250 \mathrm{~mm}$

BEF-MS12G-A
BEF-MS12G-B

BEF-MS12G-(N)A: A $=200 \mathrm{~mm}$
BEF-MS12G-(N)B: $A=300 \mathrm{~mm}$

BEF-W190

BEF-WTT12L

BEF-W280

BEF-RMC-D12

BEF-KH-WTT12L

IOLG2EC-03208R01, IOLG2EI-03208R01, IOLG2PN-03208R01 (IO-Link Master)

IOLA2US-01101 (SiLink2 Master)

IOLP2ZZ-M3201 (SICK Memory Stick)

Dimensional drawings Connection systems

DOL-0804-W02M
DOL-0804-W05M

DOL-1205-W02M
DOL-1205-W05M

DSL-0804-G02MC
DSL-0804-G05MC

A

B

DOS-0804-G

DOS-1205-G

DSL-1205-G02MC
DSL-1205-G05MC

(1) brn
(2) wht
(3) blu
(4) blk
(5) gra

DOS-0804-W

DOS-1205-W

Dimensional drawings Reflectors and optics

P41F

PL30F

PL81-1F

REF-AC1000-56

$x=56,3 \mathrm{~mm}$
$y=56,3 \mathrm{~mm}$

REGISTER AT WWW.SICK.COM TODAY AND ENJOY ALL THE BENEFITS

- Select products, accessories, documentation and software quickly and easily.
- Create, save and share personalized wish lists.
(V) View the net price and date of delivery for every product.
(Requests for quotation, ordering and delivery tracking made easy.
(Overview of all quotations and orders.
(d) Direct ordering: submit even very complex orders in moments.
\square View the status of quotations and orders at any time. Receive e-mail notifications of status changes.
- Easily repeat previous orders.
\square Conveniently export quotations and orders to work with your systems.

SERVICES FOR MACHINES AND SYSTEMS: SICK LifeTime Services

Our comprehensive and versatile LifeTime Services are the perfect addition to the comprehensive range of products from SICK. The services range from product-independent consulting to traditional product services.

Consulting and design
Safe and professional

Product and system support
Reliable, fast and on-site

Verification and optimization
Safe and regularly inspected

Upgrade and retrofits
Easy, safe and economical

Training and education
Practical, focused and professional

SICK AT A GLANCE

SICK is a leading manufacturer of intelligent sensors and sensor solutions for industrial applications. With more than 8,000 employees and over 50 subsidiaries and equity investments as well as numerous agencies worldwide, we are always close to our customers. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in various industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services round out our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

Worldwide presence:

Australia, Austria, Belgium, Brazil, Canada, Chile, China, Czech Republic, Denmark, Finland, France, Germany, Great Britain, Hungary, Hong Kong, India, Israel, Italy, Japan, Malaysia, Mexico, Netherlands, New Zealand, Norway, Poland, Romania, Russia, Singapore, Slovakia, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, Turkey, United Arab Emirates, USA, Vietnam.

Detailed addresses and further locations \rightarrow www.sick.com

[^0]: (1) 6% remission, on black
 (2) 90% remission, on white

[^1]: \rightarrow www.sick.com/PowerProx

[^2]: (1) 6% remission, on black

[^3]: ${ }^{1}$) Q1, Q2 $=2$ switching thresholds, light switching.

[^4]: (1) Optical axis sender
 (2) Optical axis receiver (3) LED indicator yellow: Status of analog output
 (4) LED indicator green: power on
 (5) Status indicator LED, yellow: Status switching output
 (6) Mounting hole, $\varnothing 4.2 \mathrm{~mm}$
 (7) Connection
 (8) Single teach-in button

[^5]: (1) 6% remission, on black
 (2) 90% remission, on white

[^6]: ${ }^{1)}$ Signal transit time with resistive load.
 ${ }^{2}$) Can be set via a mean value filter (AVG1, AVG4, AVG16, AVG64, AVG256).
 ${ }^{3}$) Depending on distance to object, distance to background and selected switching threshold.
 ${ }^{4}$) Q1 = 1 switching threshold, light/dark switching selectable via light/dark selector.

[^7]: (1) Status indicator LED, yellow: Status of output Q1
 (2) Status indicator LED, green/red: power on / stability indicator
 (3) Potentiometer
 (4) Optical axis receiver
 (5) Optical axis sender
 (6) Light/dark selector
 (7) Connection

[^8]: (1) Sensing range on black, 6% remission

[^9]: (1) $90 \% / 90 \%$ AVG1
 (2) $90 \% / 90 \%$ AVG4
 (3) $90 \% / 90 \%$ AVG16
 (4) $90 \% / 90 \%$ AVG64
 (5) $90 \% / 90 \%$ AVG256

[^10]: \rightarrow www.sick.com/PowerProx

[^11]: ${ }^{1)}$ Limit values. Operated in short-circuit protected network: max. 8 A .
 ${ }^{2}$) May not exceed or fall below Uv tolerances.
 ${ }^{3}$) Without load.
 ${ }^{4}$) Off-state current $\mathrm{I}_{\mathrm{R}} \leq 0,6 \mathrm{~mA}$.
 5) Jitter +- 20 ms .
 ${ }^{6}$) With light/dark ratio 1:1.
 ${ }^{7)}$ Do not bend below $0^{\circ} \mathrm{C}$.
 ${ }^{8)} \mathrm{A}=\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected.
 ${ }^{9)} B=$ output reverse-polarity protected.
 ${ }^{10)} D=$ outputs overcurrent and short-circuit protected.

[^12]: \rightarrow www.sick.com/PowerProx
 For more information, simply enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples, and much more.

[^13]: ${ }^{1)}$ Q1, Q2 $=2$ switching thresholds, light/dark switching selectable via light/dark selector.
 ${ }^{2)}$ Q1 = 1 switching threshold, light/dark switching selectable via light/dark selector.

[^14]: (1) Center of optical axis, receiver
 (2) Center of optical axis, sender
 (3) Mounting hole, $\varnothing 4.3 \mathrm{~mm}$
 (4) M12 plug connector, $5-\mathrm{pin}$, can be rotated through 90°
 (5) Cable, $2 \mathrm{~m}, 5$-wire, $\varnothing 3.8 \mathrm{~mm}$

