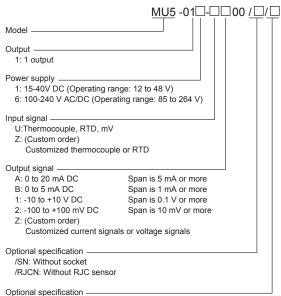
General Specifications

Model MU5 Universal Temperature Converter (Free Range Type)


GS 77J04U05-01E

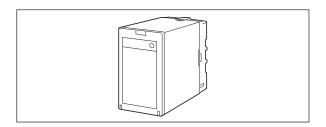
General

The MU5 is a plug-in type universal temperature converter that converts input signal (thermocouple, RTD or mV signal) into isolated DC current or DC voltage signals.

- Selection of input type(thermocouple, RTD or mV signal), I/O range setting, burnout setting, output adjustment, I/O monitoring, and loop back test can be made using the optional Parameter Setting Tool (VJ77) or Handy Terminal (JHT200).
- The operation indicating lamp shows the operation status, abnormalities in a setting etc.
- Output adjustment, wiring resistance correction, and ON/OFF of RJC can be made using the switches on the front panel of the MU5 without a setting tool such as Handy Terminal.
- For the Fahrenheit display, specify the option "/DF".

Model and Suffix Codes

/DF: Fahrenheit display function


Ordering Information

Specify the following when ordering.

- Model and suffix codes: e.g. MU5-016-UA00
- Input type: e.g. Pt100 (ITS-90)
- Input range: e.g. 0 to 100°C
- Output range: e.g. 4 to 20 mA DC
- Burnout: e.g. Up

The universal temperature converter will be shipped with an input type of Pt100 (ITS-90) and an input range of 0 to 100°C if no specification of input type and input range.

Input/Output Specifications

Input signal:

Thermocouple: Type K, T, E, J, R, S, B, N (ITS-90: JIS'97), W3^(Note1), W5^(Note2) (Note1)W97Re3-W75Re25 Tungsten97% Rhenium 3% - Tungsten75% Rhenium25%) The abbreviation of ASTM E988 Standard. (Note2) W95Re5-W74Re26 (Tungsten95% Rhenium 5% - Tungsten74% Rhenium 26%) The abbreviation of ASTM E988 Standard. RTD: Pt100 (ITS-90: JIS'97), JPt100 (JIS'89) Pt50 (JIS'81), Pt100 (IPTS68: JIS'89) Pt100 (ITS-90): R⁰ = 100 Ω, R¹⁰⁰ /R⁰ = 1.3851 JPt100 (JIS'89): R⁰ = 100 Ω, R¹⁰⁰ /R⁰ = 1.3916 Pt100 (IPTS-68): R⁰ = 100 Ω, R¹⁰⁰ /R⁰ = 1.3850 mV DC signal: -500 to +500 mV DC Measuring unit:°C, K, °F^(*1), mV *1: When specify the option code "/DF".

Input type and measuring range:

Input type (thermocouple)	Measuring range (°C)	
Туре К	-270 to +1372	
Туре Т	-270 to +400	
Туре Е	-270 to +1000	
Туре Ј	-210 to +1200	
Type R	-50 to +1768	
Type S	-50 to +1768	
Туре В	0 to +1820	
Туре N	-270 to +1300	
Туре W3	0 to +2300	
Type W5	0 to +2300	
Input type (RTD)	Measuring range (°C)	
Pt100 (ITS-90)	-200 to +850	
Pt100 (IPTS-68)	-200 to +660	
JPt100 (JIS'89)	-200 to +510	
Pt50 (JIS'81)	-200 to +649	
Input type (mV DC)	Measuring range (mV DC)	
mV	-500 to +500	

 $\begin{array}{l} \mbox{Measuring span: 3 mV or more (thermocouple, mV signal) , 10°C or more (RTD) \\ \mbox{Input resistance: 1 } M\Omega \mbox{ during power on; 10 } k\Omega \mbox{ during power off (thermocouple, mV signal)} \end{array}$

Input external resistance:

- Thermocouple, mV signal: 500Ω or less However, this resistance value can be added to the BARD600 internal resistance when the converter is used with BARD600.
- RTD: Input span (°C) x 0.4 Ω or less / wire or 10 Ω , whichever is smaller. However, this resistance value can be added to the BARD700 internal resis-

tance when the converter is used with BARD700.

RTD detective current: Approx. 0.7 mA

Maximum allowable input: ±4 V DC Output signal: 1 point of DC current or DC voltage signal

Output signal setting range:

Output signal suffix code	Setting range
A	0 to 20 mA DC Span is 5 mA or more
В	0 to 5 mA DC Span is 1 mA or more
1	±10 V DC Span is 0.1 V or more
2	±100 mV DC Span is 10 mV or more

Allowable load resistance:

Voltage output: $2 k\Omega$ or more for $\pm 5 V DC$

10 k Ω or more for ±10 V DC 250 k Ω or more for ±100 mV DC

Current output: 15 (V)/max. output (A) (Ω) or less Adjustment range:

Input adjustment: ±1% of span or more (Zero/Span) Output adjustment: ±5% of span or more (Zero/ Span)

Standard Performance

Accuracy rating: ±0.1% of span However, the accuracy is not guaranteed for output levels less than 0.5% of the span of a 0 to X mA output range type.

- The accuracy is limited according to the input/output range settings.
- For thermocouple, add the accuracy of RJC to the calculated accuracy.
- Accuracy Calculation

Accuracy = Input accuracy + Output accuracy (%)

[Input accuracy] <Thermocouple>

- ±0.1% of span or ±1°C, whichever is greater when the following range is included.
 Type K, E and T: Less than -200°C
 Type B: 400°C to less than 600°C
 Type E and J: More than 750°C
 Type N: More than 1200°C
- ±0.1% of span or ±2°C, whichever is greater when the following range is included. Type N: Less than –200°C
- Accuracy is not guaranteed for less than 400°C of Type B.
- When the measuring range is ±20 mV in thermoelectromotive force, substitute 10 for Tm of the following expression. When ±100 mV, substitute 40. An obtained value is applied as an input accuracy. Tm/measuring span (mV) x input accuracy*
 *: Any of ±0.1%, ±1°C or ±2°C.
- Type K, E, T and N: For the measured temperatures less than –200°C, add the following coefficient (Te) to the input accuracy mentioned above. An obtained value is the input accuracy. Te [°C]=(-200 [°C] – measured temp. [°C]) / X
- (X=10 for Type K, T, and E; X=5 for Type N) • Accuracy of reference junction compensation (RJC):

Other than Type R and S: $\pm 1^{\circ}$ C (0 to 50°C) Type R and S: $\pm 2^{\circ}$ C (0 to 50°C) Type K, E, T and N: For the measured temperatures less than –200°C, multiply the input accuracy mentioned above by K, where K=(Thermocouple output change/°C near 0°C)/(Thermocouple output change/°C at measured temperature) <RTD>

 $\pm0.05\%$ of span or $\pm0.05^\circ C,$ whichever is greater. For Pt50 (JIS'81), $\pm0.1\%$ of span or $\pm0.1^\circ C,$ whichever is greater.

<mV signal>

Compare the specified input range with the input range in the table below (narrower range) and choose accuracy calculation conditions. However, $\pm 0.05\%$ is applied if an input accuracy obtained from the expression is less than $\pm 0.05\%$.

Input accuracy = ±0.05% x a/b

Input range	Accuracy calcu	lation condition
	а	b
±20 mV DC	10(mV)	
±100 mV DC	40(mV)	Innutanon
Outside of ±100 mV DC	200(mV) Input span	
and within ±500 mV DC		

[Output accuracy]

Compare the specified output range with the output range in the table below (narrower range) and choose accuracy calculation conditions. However, $\pm 0.05\%$ is applied if an output accuracy obtained from the expression is less than $\pm 0.05\%$.

Output accuracy = ±0.05% x a/b

Output signal suffix code		tput signal suffix code Accuracy calculation condition	
	Output range	а	b
A	0 to 20 mA DC	10(mA)	Output span
В	0 to 5 mA DC	2.5(mA)	
	±2.5 V DC	1(V)	
1	Outside of ±2.5 V DC	4(V)	
	and within ±10 V DC	4(V)	
	±25 mV DC	10(mV)	
2	Outside of ±25 mV DC	40(mV)	
	and within ±100 mV DC	40(1117)	

Burnout: Up, Down or Off; the maximum burnout time is specified as 60 seconds.

Response speed: 150 ms, 63% response (10 to 90%) Effect of power supply voltage fluctuations:

 $\pm 0.1\%$ of span or less for the fluctuation within the operating range of each power supply voltage specification.

Effect of ambient temperature change:

 $\pm 0.15\%$ of span or less for a temperature change of 10°C.

Effect of leadwire resistance change:

Thermocouple: $\pm 15~\mu V$ or less for a change of 100 Ω

RTD: $\pm 0.2^{\circ}$ C or less for a change of 10 Ω /wire.

Power Supply and Isolation

Power supply rated voltage: 15-40 V DC ... or 100-240 V AC/DC = 50/60 Hz Power supply input voltage: 15-40 V DC ... (±20%) or 100-240 V AC/DC = (-15, +20%) 50/60 Hz Power consumption: 24 V DC 1.7 W, 110 V DC 1.6 W 100 V AC 3.5 VA, 200 V AC 4.9 VA Insulation resistance: 100 MΩ at 500 V DC between input, output, power supply, and grounding terminals mutually. Withstand voltage: 2000 V AC for 1 minute between input, output, power supply and grounding terminals mutually.

Environmental Conditions

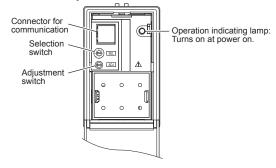
Operating temperature range: 0 to 50°C Operating humidity range: 5 to 90% RH (no condensation)

Operating conditions: Avoid installation in such environments as corrosive gas like sulfide hydrogen, dust, sea breeze and direct sunlight. Installation altitude: 2000 m or less above

sea level.

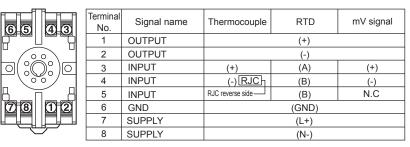
Mounting and Dimensions

Construction: Plug-in type

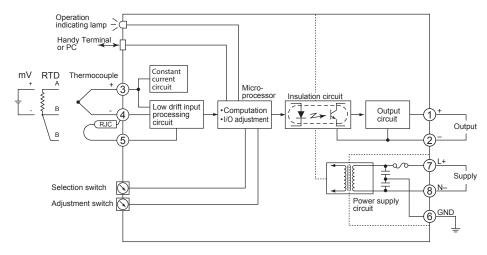

Material: Main unit : ABS resin (black), UL94 V-0 ABS resin + polycarbonate resin (black), UL94 V-0 PBT resin, including glass fiber (black), UL94 V-0 Socket: Modified polyphenylene oxide resin, including glass fiber (black), UL94 V-1
Mounting: Wall or DIN rail mounting Connection: M3.5 screw terminals
External dimensions: 86.5 (H) x 51 (W) x 123 (D) mm (including a socket)
Weight: Main unit: approx. 200 g Socket: approx. 60 g

Accessories

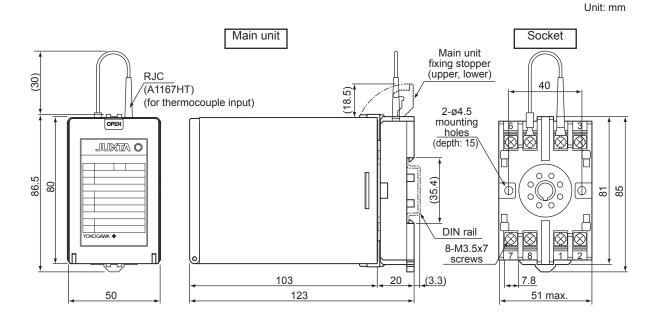
Spacer: One (for DIN rail mounting) Range label: One RJC sensor: One (except for "/RJCN")

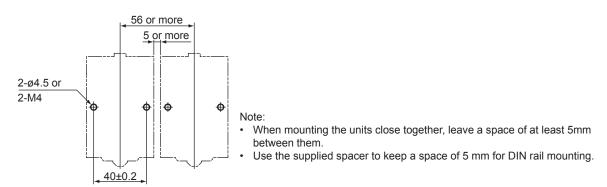

Front Panel

Output adjustment, wiring resistance correction, and ON/OFF of RJC can be made using the selection switch and adjustment switch.



Position of selection switch	Item to be adjusted
0	No function
1	Output zero adjustment
2	Output span adjustment
6	Wiring resistance correction
7	ON/OFF of RJC


Terminal Assignments


Block Diagrams

External Dimensions

<Mounting Dimensions>

• The information covered in this document is subject to change without notice for reasons of improvements in quality and/or performance.

All Rights Reserved. Copyright © 2005, Yokogawa Electric Corporation