pH and ORP Sensors

GS 12B07B02-E

Specifications

General

GENERAL

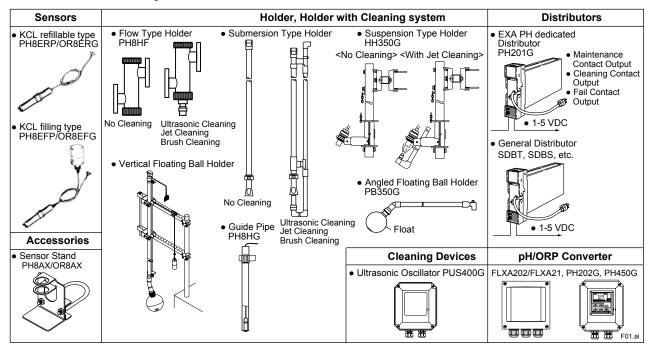
Yokogawa's process pH (PH8EFP, PH8ERP) and ORP (OR8EFG, OR8ERG) meters are highly reliable and feature advanced functions which are useful for a wide variety of applications including water quality management in a broad range of production processes and medium-sized wastewater treatment plants, or for general pH and ORP control systems. Based on Yokogawa's track record and years of experience, a comprehensive range of products has been produced to provide solutions best suited to individual applications.

For reliable measurement of pH of high purity water in boilers and semiconductor process applications, the pH sensor PH8EHP and holder PH8HH are offered.

This GS is mentiones about PH8EFP, PH8ERP, OR8EFG and OR8ERG. See GS12B10B00-01EN about PH4/OR4 Sensor Series pH/ORP Sensor.

FEATURES

Ryton pH/ORP Sensors PH8EFP, PH8ERP, OR8EFG, OR8ERG


- With the body made of Ryton, a strong engineering plastic, which is comparable to Fluoropolymer (PTFE) in terms of corrosion resistance and heat resistance, it allows for a wide range of applications.
- A single type of sensor can support all applications regardless of whether a holder or cleaner is used.
- The integrated-sensor design simplifies calibration with standard solutions and maintenance.
- The pH glass electrode of a pH sensor, the platinum or gold electrode of a ORP sensor and junction can be individually replaced.

pH Sensor for High Purity Water: PH8EHP

- The dedicated holder provides solutions to problems that arise when measuring high-purity water.
- •Combined with PH202, FLXA202/FLXA21, PH450G, compensates for the effect of fluid temperature.

SYSTEM CONFIGURATION

For the PH202, FLXA202, FLXA21 2-Wire Type pH/ORP transmitter, see GS 12B07D02-E, GS 12A01A03-01EN, GS 12A01A02-01E and for the PH450G 4-Wire Type pH Converter, see GS 12B07C05-01E. For the holders or cleaning devices, see GS 12J05C02-00E.

Fig.1-a System Configuration (General Purpose, Non-Explosionproof Types)

Any company's names and product names mentioned in this GS are names, trademarks or registered trademarks of their respective companies.

Yokogawa Electric Corporation 2-9-32, Nakacho, Musashino-shi, Tokyo 180-8750, Japan Tel.: 81-422-52-5617 Fax.: 81-422-52-6792 GS 12B07B02-E ©Copyright Jan. 2000 10th Edition May 2016

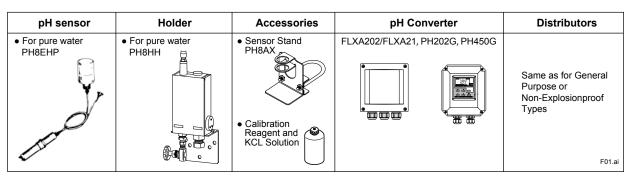


Fig.1-b System Configuration (For Pure Water)

SPECIFICATIONS

1. pH Sensor

1-1. Common Specifications

Measured object	:Hydrogen ion concentration
	(pH) in aqueous solution
Measurement principle	:Glass electrode method
Measuring range	:Different by used sensor
Measurement conditions	S:
Process temperature	;See Table 1
Process pressure	;See Table 2

Table 1. Process Temperature Range

pH Sensor	Holder Type (*2)	Holder Material (*1)	Cleaner	pH Range	Temperature (°C)
	Guide-pipe	PVC	None		-5 to 50
	(PH8HG)	PP	None		-5 to 80
	Submersion (PH8HS)	PP	None, Provided		-5 to 80
PE8ERP	Flow-through (PH8HF)	SS	None, Provided	2 to 12	-5 to 80
	Suspension (HH350G)	SS	None, Provided		-5 to 80
	Float (PB350G, PB360G)	PP, SS	None		-5 to 50
	Guide-pipe	PVC	None	2 to 12	-5 to 50
	(PH8HG)	PP	None		-5 to 80
	Submersion (PH8HS)	PP,	None		-5 to 100
		SS	Provided		-5 to 80
Flow	Flow-through (PH8HF)	PP	None, Provided	0 to 14	-5 to 80
PH8EFP		ss	None		-5 to 105
		55	Provided		-5 to 80
	Suspension (HH350G)	SS	None, Provided		-5 to 80
	Float (PB350G, PB360G)	PP, SS	None		-5 to 50
PH8EHP	High purity water(PH8HH)	Acryl	None	2 to 12	0 to 50

the solution is pH3 or more acidic.
*2 For flow-through types, refer also to the solution temperature and pressure diagram of Holder GS 12J05C02-00E.

Table 2. Process Pressure Range

pH Sensor Holder	PH8ERP	PH8EFP
Submersion	Atmospheric pressure (Submersion depth: Max. 3 m)	
Guide-pipe Suspension Float	Atmospheric pressure (Submersion depth: Max.3 m)	
Flow-through (*1)	Atmospheric pressure	Atmospheric pressure to 10 kPa (*2)
	to 50 kPa	Atmospheric pressure to 500 kPa (*3)

*1 For flow-through types, refer also to the solution temperature and pressure diagram of Holder GS 12J05C02-00E.

*2 When general purpose reserve tank used.

*3 When medium-pressure reserve tank used.

Table 3. Selection for pH Sensor

pH Sensor Application	PH8ERP PH8EFP	PH8EHP
General purpose	0	×
High purity water	×	0
Contaminating and sulfide-containing solutions	×	×
Caustic electrolysis solutions Solutions containing organic solvents	×	×
Waste water containing hydrofluoric acid	×	×

Note: Consult sales personnel about selection for pH sensor because the table above is just for reference.

1-2. KCI Refillable Type Sensor (PH8ERP)

Measuring	range: pH2 to 12
Measuring	temperature: -5 to 80°C
C C	(See Table 1 when using holder)
Measuring	pressure: Atmospheric pressure to 50 kPa
	(See Table 2 when using holder)
Temperatu	re compensation sensor: Pt1000
Wetted par	t materials:
Body;	Ryton (PPS resin), glass, titanium or
	Hastelloy C, ceramics, Fluoro rubber
	(FKM) or Perfluoroelastomer (FFKM)
Cable;	Chlorinated polyethylene rubber (Cable
	sheath)
Weight:	Approx. 0.4 kg

1-3. KCI Filling Type Sensor PH8EFP

	ng Type Sens	sor PH8EFP	
Measuring ra	ange:	pH0 to 14	
Measuring te	emperature:	-5 to 105°C	
- (-	-5 to 80°C wh	en using Gui	de-pipe holder)
	See Table 1 v		
Measuring p	ressure:	-	
A	Atmospheric p	ressure to 10	kPa
(*	General purpo	se or big volur	me tank 500 mL)
(See Table 2 v	hen using ho	lder)
Á	Atmospheric p	ressure to 50	0 kPa
(Medium press	sure)	
(See Table 2 w	hen using ho	older)
Temperature	e compensatio	on sensor:	Pt1000
Wetted part	materials:		
Body;	Ryton (PPS r	resin), Glass, T	Fitanium or
	Hastelloy C,	Ceramics or F	luoropolymer
	(PTFE), Fluo	ro rubber (FKI	M) rubber or
	Perfluoroelas	stomer (FFKM))
Cable;	Chlorinated po	lyethylene rubb	er (Cable sheath)
KCI tube;	Heat-resista	nt soft PVC (General
	purpose or b	oig volume tai	nk 500 mL),
	Polyethylene	e (Medium pro	essure)
147.1.1.1		•	-

Weight:

- Sensor; Approx. 0.4 kg
- Tank; Approx. 0.3 kg (General purpose) Approx. 1 kg (Medium pressure) Approx. 0.8 kg (Big-volume)

2. ORP Sensor

2-1. Common Specifications

Measured object:

Oxidation-Reduction potential in aqueous solution Measurement principle: Metal electrode method Measuring range: -1500 to 1500 mV Measurement conditions: Process temperature: See Table 4 Process pressure: See Table 5

ORP Sensor	Holder Type (*2)	Holder Material (*1)	Cleaner	Temperature (°C)
	Guide-pipe	PVC	None	-5 to 50
	Guide-pipe	PP	None	-5 to 80
	Submersion,	PP	None, Provided	-5 to 80
OR8ERG	Flow-through	SS	None, Provided	-5 to 80
	Suspension Float	SS	None, Provided	-5 to 80
		PP, SS	None	-5 to 50
	Guide-pipe	PVC	None	-5 to 50
		PP	None	-5 to 80
	Submersion	PP, SS	None	-5 to 100
	Submersion	FF, 33	Provided	-5 to 80
OR8EFG	Flow-through	PP	None, Provided	-5 to 80
			None	-5 to 105
		SS	Provided	-5 to 80
	Suspension	SS	None, Provided	-5 to 80
	Float	PP, SS	None	-5 to 50

 Note:
 PV: Rigid Polyvinyl, PP: Polypropylene, SS: Stainless Steel

 *1
 Stainless steel holder and should be used when the pH value

of the solution is pH3 or more acidic. *2 For flow-through types, refer also to the solution temperature and pressure diagram of holders GS 12J05C02-00E.

Table 5. Process Pressure Range

ORP Sensor Holder	OR8ERG	OR8EFG
Submersion	Atmospheric pressure (Submersion depth: Max. 3 m)	
Guide-pipe Suspension Float	Atmospheric pressure (Submersion depth: Max. 3 m)	
	Atmospheric pressure	General purpose Atmospheric pressure to10 kPa
Flow-through (*1)	to 50 kPa	Medium pressure Atmospheric pressure to 500 kPa

*1: For flow-through types, refer also to the solution temperature and pressure diagram of Holder GS 12J05C02-E.

2-2. KCI Refillable Type Sensor OR8ERG

Measuring	g range:	-1500 to 1500 mV
Measuring	temperature:	-5 to 80°C
	(See Table 4	when using holder)
Measuring	pressure:	Atmospheric pressure to 50 kPa
	(See Table 5	when using holder)
Wetted pa	rt materials:	
Body;	Ryton (PPS	S resin), platinum-glass or
	gold-epoxy	resin, titanium, ceramics,
	Fluoro rubl	ber (FKM)
Cable;	Chlorinated	d polyethylene rubber (Cable
	sheath)	
Weight:	Approx. 0.4 k	(g

2-3. KCI Filling Type Sensor OR8EFG

2-3. RUI FIIII	ng Type Sensor Okoerg
Measuring (range: -1500 to 1500 mV
	emperature: -5 to 105°C
5	(-5 to 80°C when using guide-pipe holder)
	(See Table 4 when using holder)
Measuring	
	Atmospheric pressure to 10 kPa
	(General purpose or big volume tank 500 mL)
	(See Table 5 when using holder)
	Atmospheric pressure to 500 kPa
	(Medium pressure)
	(See Table 5 when using holder)
Wetted part	
Body;	Ryton (PPS resin), platinum-glass or
	gold-epoxy resin, titanium or Hastelloy C,
	ceramics, Fluoro rubber (FKM)
Cable;	Chlorinated polyethylene rubber (Cable sheath)
KCI tube;	Heat-resistant soft PVC (General purpose),
	Polyethylene (Medium pressure)
Weight:	
Sensor:	Approx. 0.4 kg
Tank;	Approx. 0.3 kg (General purpose)
	Approx. 1 kg (Medium pressure)
	FF

3. pH Measuring System for High Purity Water

Use a holder for high purity water when using pH sensor for high purity water.

3-1. pH Sensor for High Purity Water PH8EHP Measuring temperature: 0 to 50°C

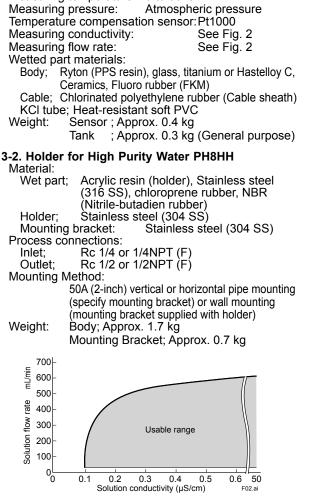


Fig.2 Solution flow rate and solution conductivity of sensor and holder for high purity water

4. Terminal Box

4-1. Terminal Box for General pH/ORP Sensors and PH4/OR4 Sensors (WTB10-PH1, -PH3, -PH5)

Used when transmitter or converter is installed remotely from general pH/ORP sensors and PH4/OR4 Sensors (PH4□ in nocombination with SA405, OR4□, or PH4□T). Maximum cable length including sensor cable length

should be within 20 m.

Ambient temperature: -10 to 50°C Construction: JIS waterproof Case material: Fiberglass reinforced polycarbonate resin

Case color: Grayish green (Munsell 2.5GY5.0/1.0) Electrical connections:

pH sensor side;

ø21 mm hole (With G1/2 plastic gland) pH Transmitter or Converter side;

ø13 mm hole (With G1/2 plastic gland) With Cable (Maximum length 20 m) Conduit adapter(optional)

4-2. Terminal Box for PH4□ Sensors (WTB10-PH2, -PH4, -PH6)

Used when transmitter or converter is installed remotely from $PH4\Box$ in combination with SA405.

Maximum cable length including sensor cable length should be within 20 m.

Ambient temperat	ure : -10 to 50°C
Construction	: JIS waterproof
Case material	: Fiberglass reinforced
	polycarbonate resin
Case color	: Grayish green
	(Munsell 2.5GY5.0/1.0)
Electrical connect	ions:
pH sensor side:	
	mm hole (With G1/2 plastic gland)
pH Transmitter of	or Converter side:

Ø13 mm hole (With G1/2 plastic gland) With Cable (Maximum length 20 m) Conduit adapter(optional)

Temperature sensor side: Pg7 plastic gland

5. Accessories (Purchased Separately)

See Model and Suffix Codes.

Compliance with the simple apparatus requirements

PH8EFP, PH8ERP and PH8EHP meet the simple apparatus requirements defined in the following standards.

Note: TIIS certified types cannot be connected. Use the sensors under the conditions of use required by the standards.

Applicable standards:

ANSI/ISA-60079-11 (2014) ANSI/ISA-60079-0 (2009) CAN/CSA-C22.2 NO. 60079-11:14 CAN/CSA-C22.2 NO. 60079-0:11 방호장치 의무안전인증 고시

GB 3836.4-2010

Conditions of use:

- Use in combination with an internally isolated transmitter, or use with, a transmitter in combination with isolated barrier. The FLXA21 is internally isolated.
- (2) Upper limit of the process temperature. The upper limit of process temperature is indicated below when the sensor is used in combination with a YOKOGAWA transmitter.

For FLXA21, model and suffix code below is available.

FLXA21-D-□-D-EA-P1-○-A-N-LA-N-NN □ can be any value. ○ must be NN or P1. Any option code is available.

For PH202S, model and suffix code below is available.

PH202S-o-E o must be C or U. There are no PH202S models that meet the Korean explosion proof standards. Any option code is available.

Upper limit of process temperature on the PH8EFP

Transmitter used in combination	FLX	A21	PH202S		
Ambient temperature Ta Temperature class	40°C	60°C	40°C	60°C	
Т6	16	16	28	28	
T5	81	31	95 (*1)	43	
T4	105	66	105	78	
Т3	105	105	105	105	
T2	105	105	105	105	
T1	105	105	105	105	

*1: Care about upper limit 100°C of temperature class T5 should be taken.

Upper limit of process temperature on the PH8ERP

Transmitter used in combination	FLX	A21	PH202S		
Ambient temperature Ta Temperature class	40°C	60°C	40°C	60°C	
Т6	16	16	28	28	
T5	80	31	80	43	
T4	80	66	80	78	
Т3	80	80	80	80	
T2	80	80	80	80	
T1	80	80	80	80	

• Upper limit of process temperature on the PH8EHP

Transmitter used in combination	FLX	A21	PH202S		
Ambient temperature Ta Temperature class	40°C	60°C	40°C	60°C	
Т6	16	16	28	28	
T5	50	31	50	43	
T4	50	50	50	50	
Т3	50	50	50	50	
T2	50	50	50	50	
T1	50	50	50	50	

Other warnings are provided in the user's manual.

- 1. pH Sensor
- KCI Refillable Type pH Sensor

Model	s	uff	ix	Co	de	Option Code	Specifications
PH8ERP							KCI Refillable Type pH Sensor
Cable	-0	3					3 m
Length	-0	5					5 m
	-0	7					7 m
	-1	0					10 m
	-1	5					15 m
	-2	0					20 m
Solution		-Т	Ν				Titanium
Ground Tip		-H	С				Hastelloy C
-			-N	4			Always -N
pH Measur	ing			-Т	•		For PH200/PH400 (*1)
System				-E			For PH202/FLXA202/FLXA21 (*2)
				-F			For FLXA202/FLXA21 (*6)
	-В			For PH100 (*3)			
				-G	6		For PH450G,PH202/TB (*5)
Style					*A		Style A
Option				0-1	ring	/PF	Perfluoroelastomer (FFKM) (*4)

*1: Mark band is shown by alphanumeric and fork terminals are used.

*2: Mark band is shown by numeral and pin terminals are used.

When terminal box is used, select WTB10-PH1.

*3: The tag which indicated the color, the sign, and the number is attached to the cable of a sensor.

*4: Choose Perfluoroelastomer (FFKM) when this is used in organic solvent, high alkali or high temperature solution.

*5: Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH3.

*6: Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5.

• KCI Filling Type pH Sensor

Model	s	Suffix Code			•	Option Code	Specifications
PH8EFP							KCI Filling Type pH Sensor
Cable	-03	1					3 m
Length	-05	;					5 m
and KCI	-07	,					7 m
Tube	-10)					10 m
Length	-15	;					15 m
	-20)					20 m
Solution		-TN					Titanium
Ground Tip		-НС					Hastelloy C
KCI Reserve		- T	Τ1				For general purpose
Tank							(250 mL solution inlet)
(*1)		-T	Т2				For medium pressure (*2)
		-T	ТЗ				Big volume tank
							(With 500 mL tank)
		-T	N1				For maintenance (for TT1, TT3)
		-T	N2	2			For maintenance (for TT2)
-			-N	1			Always -N
pH Measurir	ng S'	vste	m	-Т			For PH200/PH400 (*3)
1.	0	, ,		-E			For PH202/FLXA202/FLXA21(*4)
				-F			For FLXA202/FLXA21 (*10)
		-В					For PH100 (*5)
		-G					For PH450G,PH202/TB (*9)
Style	*A			*A		Style A	
Option	O-ring					/PF	Perfluoroelastomer (FFKM) (*6)
Specia	al gla	ass e	elec	ctroo	de	/HA	Glass electrode for high alkali (*7)
	Šp	ecia	l ju	nctio	on	/TF	PTFE junction (*8)

*1: 2-inch pipe mounting bracket is supplied with TT1, TT2 and TT3. Only a supply tube, but no KCI solution, is supplied with TN1 and TN2. Since a KCI solution is not supplied with TT2, arrange it from among accessories or auxiliary parts.

*2: Prepare an air pressure regulator as shown in the diagram below when the medium-pressure reserve tank is used. To pH sensor, Regulator, (to be prepared separately)

F03.ai

*3: Mark band is shown by alphanumeric and fork terminals are used.
*4: Mark band is shown by numeral and pin terminals are used. When terminal box is used, select WTB10-PH1.

To pH sensor

- *5: The tag which indicated the color, the sign, and the number is attached to the cable of a sensor.
- *6: Choose Perfluoroelastomer (FFKM) when this is used in organic solvent, high temperature alkaline solution.
- *7: Choose when using in high alkali or high temperature alkaline solution.
- *8: Choose when using in the heavily contaminated application.
 *9: Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used. select WTB10-PH3.
- *10: Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5.

KCI Refillable Type ORP Sensor •

Model			uffix ode		Option Code	Specifications
OR8ERG					······	KCI Refillable Type ORP Sensor
Electrode	-A	U				Gold
	-Р	т			·····	Platinum
Cable Lengt	h	-0	3			3 m
		-0	5		·····	5 m
		-0	7		·····	7 m
		-1	0		·····	10 m
		-1	5		·····	15 m
		-2	0			20 m
Measuring			-N			For OR200/OR400 (*1)
System			-E		·····	For PH202/FLXA202/FLXA21 (*2)
			-F		·····	For FLXA202/FLXA21 (*5)
		-В			·····	For OR100 (*3)
		-G		i		For PH450G,PH202/TB (*4)
Style				*A		Style A

Mark band is shown by alphanumeric and fork terminals are used. *1: Mark band is shown by numeral and pin terminals are used. When terminal box is used, select WTB10-PH1. *2.

The tag which indicated the color, the sign, and the number is *3:

- attached to the cable of a sensor. *4: Mark band is shown by numeral and M3 ring terminals are used.
- When terminal box is used, select WTB10-PH3.
- Mark band is shown by numeral and M4 ring terminals are used. *5 When terminal box is used, select WTB10-PH5.

KCI Filling Type ORP Sensor

Model	5	Suff	ïx	Co	de	Option Code	Specifications
OR8EFG							KCI Filling Type ORP Sensor
Electrode	-A	U					Gold
	-P	т					Platinum
Cable Length		-0:	3				3 m
and KCI Tube		-0	5				5 m
Length		-07	7				7 m
		-10	0				10 m
		-1	5				15 m
		-20	0				20 m
KCI Reserve			-T	T1			For general purpose
Tank (*1)							(250 mL solution inlet)
			-T	Т2			For medium pressure (*2)
			-T	N1			For maintenance (for TT1)
			-Т	N2			For maintenance (for TT2)
Measuring Sys	ster	m		-N			For OR200/OR400 (*3)
		-E					For PH202/FLXA202/FLXA21 (*4)
	-F					For FLXA202/FLXA21 (*7)	
	-В			For OR100 (*5)			
				-G	i		For PH450G.PH202/TB (*6)
Style					*A		Style A

- *1: A 50A (2-inch) pipe mounting bracket is supplied with TT1 and TT2. Only a supply tube, but no KCl solution, is supplied with TN1 and TN2. Since a KCl solution is not supplied with TT2, arrange it from among accessories or auxiliary parts. Prepare an air pressure regulator as shown in the diagram below
- *2: when the medium-pressure reserve tank is used.

- *3: Mark band is shown by alphanumeric and fork terminals are used.
- Mark band is shown by numeral and pin terminals are used. When terminal box is used, select WTB10-PH1. *4:
- *5: The tag which indicated the color, the sign, and the number is attached to the cable of a sensor.
- Mark band is shown by numeral and M3 ring terminals are used. *6: When terminal box is used, select WTB10-PH3.
- *7: Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5.

pH Measuring System for High Purity 3. . Water

pH Sensor for High Purity Water

Model		Su	ffix	C	ode		Option Code	Specifications
PH8EHP								pH sensor for high purity water
Cable	-03							3 m
Length	-0	5						5 m
	-0	7						7 m
	-1	0						10 m
	-1	5						15 m
	-2	0						20 m
Solution Ground Tip		-TN					Titanium	
KCI Reserve	Tar	۱k	-Т	T1				For general purpose
(*1)								(250 mL solution inlet)
			-Т	ТЗ				Big volume tank
								(With 500 mL tank)
			-T	N1				For maintenance (for TT1)
-				-N				Always -N
Measuring S	System -H					For PH200/PH400 (*2)		
	-E					For PH202/FLXA202/FLXA21 (*3)		
	-F					For FLXA202/FLXA21 (*5)		
		-G					For PH450G,PH202/TB (*4)	
Style						*A		Style A

- Only a KCl supply tube is supplied with TN1. KCl solution is supplied with TT1 and TT3. *1:
- *2: Mark band is shown by alphanumeric and fork terminals are used. Mark band is shown by numeral and pin terminals are used. *3:
- When terminal box is used, select WTB10-PH1. *4: Mark band is shown by numeral and M3 ring terminals are used.
- When terminal box is used, select WTB10-PH3. Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5. *5:

pH Holder for High Purity Water

Model	ę	Suffix Co	de	Option Code	Specifications
РН8НН					pH Holder for High Purity Water, wall-mount type
Connection ports	-	PT IPT			Rc1/4 (Inlet), Rc1/2 (Outlet) 1/4NPT (Inlet), 1/2NPT (Outlet)
-		-H	_		Always -H
Style			*A		Style A
Option		ounting racket		/P	Pipe mounting bracket

Terminal Box 4.

Terminal Box •

Model		Suffix Code	Option Code	Specifications
WTB10				Terminal box
Combined	-Pł	-11		For PH202, FLXA202/FLXA21
System				(General sensor and PH4/OR4 sensor
				of pin terminals) (*6) (*7)
	-Pł	12		For PH202, FLXA202/FLXA21
				(PH4/OR4 sensor of pin terminals)
				(*1) (*6)
	-Pł	13		For PH450G, PH202/TB
				(General sensor and PH4/OR4 sensor of M3 ring terminals) (*4) (*7)
	-PF	14		For PH450G, PH202/TB
		14		(PH4/OR4 sensor of M3 ring terminals)
				(*1) (*4)
	-PH	15		For FLXA202/FLXA21
				(General sensor and PH4/OR4 sensor
				of M4 ring terminals) (*5) (*7)
	-Pł	16		For FLXA202/FLXA21
				(PH4/OR4 sensor of M4 ring terminals)
				(*1) (*5)
-	-	NN		Always -NN
Cable Len	gth	-00		0 m (*3)
(*2)		-05		5 m
		-10		10 m
	-15			15 m
Option	I	Vounting	/P	Pipe mounting bracket
		Bracket	/W	Wall mounting bracket
		Conduit		G1/2
		Adapter	/ANSI	1/2NPT

Use -PH2, -PH4, -PH6 of combined system when using adapter *1: with temperature sensor (SA405) is used.

For WTB10 of combined system, maximum cable length including *2: sensor cable length should be 20 m.

*3

*4:

*5:

*6: *7:

sensor cable length should be 20 m. The dedicated extension cable should be used. M3 screw terminals and cable with M3 ring terminals are used. M4 screw terminals and cable with M4 ring terminals are used. M4 screw terminals and cable with pin terminals are used. Use -PH1, -PH3, -PH5 of combinated system when not using SA405 in case of PH4/OR4.

5. Accessories

Accessories for pH Meter •

Model		Suffix Code	Option Code	Specifications
PH8AX				Accessories for pH meter (*1)
Calibration Reagents	-L -F	-		Two bottles, each containing 250 mL solution (pH7 and pH4) 24 bags, each bag containing powder for 500 mL solution (pH7 X 12 bags and pH4 X 12 bags) and two 500 mL polyethylene bottles.
Style		*A		Style A
Option (*2)			/STD /KCLL	Sensor stand (with mounting bracket for 50A 2-inch pipe) KCI solution (one 250 mL
			/KCLP	polyethylene bottle) KCI powder (three bags, 250 mL solution each)
			/TMP	Thermometer (0 to 100°C)

Including the following: Two 200 mL polyethylene cups *1:

One cleaning bottle

*2: Either /KCLL or /KCLP is required for PH8EFP-□-□-TT2.

• Accessories for ORP Meter

Model	Suffix Code	Option Code	Specifications
OR8AX			Accessories for ORP meter (*1)
Style	*A		Style A
Option (*2)		/STD /KCLL	Sensor stand (with mounting bracket for 50A 2-inch pipe) KCI solution (one 250 mL polyethylene bottle)
		/KCLP /TMP	KCl powder (three bags, 250 mL solution each) Thermometer (0 to 100°C)

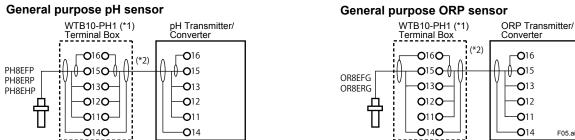
*1: Including the following: Two 200 mL polyethylene cups One cleaning bottle One pack of quinhydrone reagent powder (three bags, 250 mL solution each) One 250 mL polyethylene bottle *2: Either /KCLL or /KCLP is required for PH8EFP-□-□-TT2.

6. Spare Parts

• Spare Parts for pH Meter

Pa	art Name	Part Number	Remarks					
Glass	General	K9142TN	One for PH8ERP, PH8EFP, PH8EHP					
electrode	purpose	K9319NA	One for PH8ERP/PF, PH8EFP/PF					
	Certified	K9142TP	One for PF8EFP					
	version	K9319NB	One for PH8EFP/PF					
	High alkali	K9142TU	One for PH8EFP/HA					
		K9319NC	One for PH8EFP/HA, /PF					
Junction	General purpose	K9142TH	One for PH8ERP, PH8EFP					
		K9319QA	One for PH8ERP, PH8EFP/PF					
	High purity water	K9142TK	One for PH8EHP					
	Fluoropolymer	K9142HW	One for PH8EFP/TF					
	(PTFE)	K9319QB	One for PH8EFP/TF/PF					

Spare Parts for pH Meter

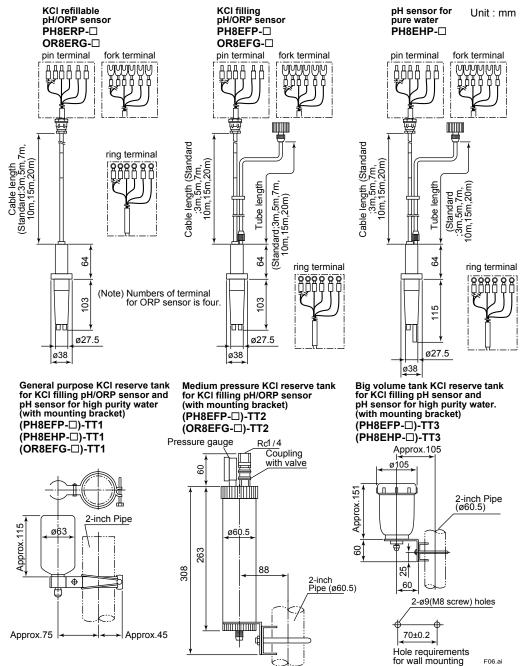

Part Name	Part Number	Remarks
KCl solution (3.3 mol/L)	K9084LP	Six 250 mL polyethylene bottles
Buffer solution for calibration (pH4)	K9084LL	Six 250 mL polyethylene bottles
Buffer solution for calibration (pH7)	K9084LM	Six 250 mL polyethylene bottles
Buffer solution for calibration (pH9)	K9084LN	Six 250 mL polyethylene bottles
Powder for buffer solution (pH4)	K9020XA	12 bags,each for preparation of 500 mL
Powder for buffer solution (pH7)	K9020XB	12 bags, each for preparation of 500 mL
Powder for buffer solution (pH9)	K9020XC	12 bags, each for preparation of 500 mL
KCI powder (for PH8EFP, PH8EHP)	K9020XU	8 bags, each for preparation of 250 mL
KCI powder (for PH8ERP)	K9142UT	2 bags, 1 bottle of 3.3 mol/L KCl, 1 syringe

Note: The pH value of the calibrating buffer solution may vary depending on storage conditions. Prepare a new solution from powder for accurate instrument calibration

Spare Parts for ORP Meter

Part	Name	Part Number	Remarks					
Sensor Platinum		K9142TS	One for OR8ERG,OR8EFG					
	Gold	K9142TT	One for OR8ERG,OR8EFG					
Junction		K9142TH	One for OR8ERG,OR8EFG					
KCI solutio	n (3.3 mol/L)	K9084LP	Six 250 mL polyethylene bottles					
KCI powde (for OR8EF		K9020XU	8 bags, each for preparation of 250 ml					
KCI powde (for OR8EF		K9142UT	2 bags 1 bottle of 3.3 mol/L KCl, 1 syringe					
Reagent	Quinhydrone	K9024EC	3 bags, each for preparation of 250 mL					
for check	Iron	K9024ED	3 bags, each for preparation of 250 mL					

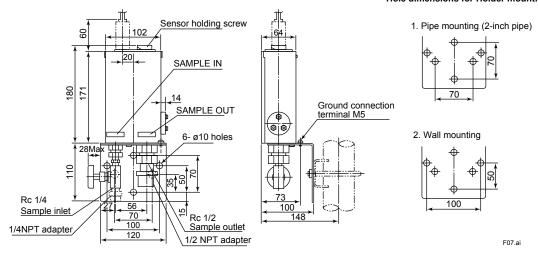
WIRING DIAGRAMS

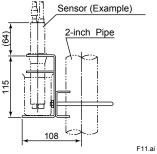

*1 : Terminal box is used only where pH transmitter/converter or ORP transmitter/converter is installed remotely from pH or ORP sensor (normally not needed).

Should be used when using combined by pin terminals with PH202G, FLXA202/FLXA21.

When combined by M3 ring terminals with PH450G, PH202/TB, use WTB10-PH3 terminal box. When combined by M4 ring terminals with FLXA202/FLXA21, use WTB10-PH5 terminal box.

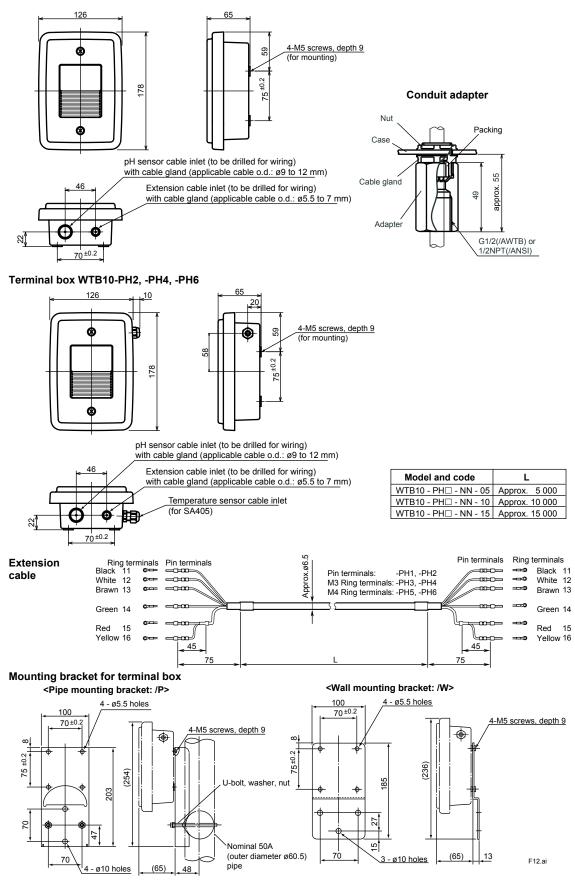
*2 : This cable is specified in the option code for the terminal box.


DIMENSIONS


All Rights Reserved. Copyright © 2000, Yokogawa Electric Corporation

Holder for high purity water PH8HH

Unit : mm Hole dimensions for Holder mounting



Unit : mm (PH8AX-□)/STD (OR8AX-□)/STD

Terminal box WTB10-PH1, -PH3, -PH5

Unit : mm

■ SELECTION CRITERIA FOR pH/ORP SENSOR AND HOLDER

<General Overall Criteria>

- (1) When any of the two conditions listed below are applicable, select a KCI filling type pH sensor and either the submersion or flow-through type holder.
 - The solution is out of the range 2 < pH < 12.
- The solution contains organic or oil in the order of a few percent.
- (2) When any of the two conditions listed below are applicable, consult our salesperson.
- Strong oxidizing solutions such as aqua regia, chromic acid , hypochloric acid, perchloric acid.
- The solution contains corrosive gases (ammonia, chlorine, hydrogen sulfide).

<Individual Criteria>

 \bigcirc : Can be used, \triangle :Shortens useful life, \times :Cannot be used

		Concentration	pH *1	Но	lder
	Chemical	W/V (%)	(25°C)	Flow-through, Submersion	Guide-pipe
	Sulfuric acid	0.5	1.0	0	×
		0.05	2.0	0	0
	Hydrochloric acid	0.4	1.0	0	×
id l		0.04	2.0	0	0
Inorganic acid	Nitric acid	0.6	1.0	0	×
		0.06	2.0	0	0
org	Phosphoric acid	1.0	1.5	0	\triangle
Ĕ	Boric acid	0.6	5.0	0	0
	Carbonic acid	0.6	3.6	0	\triangle
	Chromic acid	1.2	0.8	0	×
	Sulfurous acid	0.8	1.4	0	\triangle
	Acetic acid	0.6	2.8	0	0
cid	Formic acid	0.5	2.3	0	0
ca	Oxalic acid	0.9	1.0	0	0
ani	Lactic acid	0.9	2.4	0	0
Organic acid	Phenol acid	0.9	5.4	0	Δ
	Monochloroacetic acid	0.9	1.8	0	×
	Calcium hydroxide	0.2	12.4	0	0
Alkali	Potassium hydroxide	0.5	12.7	0	\triangle
►	Sodium hydroxide	0.4	12.9	0	Δ
	Ammonium chloride	5		0	0
alts	Aluminous water	5		0	0
l sí	Zinc chloride	5		0	0
Acid salts	Ferric chloride	5		0	0
	Ferric nitrate	5	1.3	0	Δ
<u>ں</u> ہ	Sodium sulfite	5		0	0
Basic salts	Sodium carbonate	5	11.8	0	0
ы s	Sodium phosphate	5		0	\triangle
s	Potassium chloride	5		0	0
salts	Sodium sulfate	5		0	0
al 🕯	Calcium chlorine	5		0	0
Neutral	Sodium nitrate	5	8.2	0	×
Ž	Aluminum chloride	5		0	0
5	Hydrogen peroxide	1		0	0
nts	Sodium hypochlorite solution	1	12.5	0	Δ
Oxdizing agents	Chlorinated lime	1		0	\triangle
0 "	Potassium bichromate	5	4.5	0	0
tts ic	Alcohol	10		0	Δ
Organic solvents	Organic solvent or oil			0	×
o %	(excluding alcohol)				

*1: pH values in table are calculated from dissociation constant (including measured value).

Table of Corrosion-Resistant Materials (The data should be used for reference only)

Note: This table shows corrosion resistance for each single substance alone. If a sample contains two or more substances, then the corrosion resistance may differ from that given in this table.

		Holder material					Ultrasonic transducer material Sensor solution ground tip							Seal O-ring material	Sensor body material			
		Pol	ypropy	lene		316 SS		Ha	astelloy	y C	Titanium			Fluoro rubber (FKM)	(FKM) Ryton			Remarks
	Sulfurous acid	100	nt'n Temp 20 90	0	6	it'n Temp 30	Judge	6	<u>it'n Temp</u> 30	0	6	30	Judge O			it'n Temp —) Judge]
	Hydrochloric acid	5 5	20 80	0	5	30	×	5	30	Ø	5 5	30 b	© ×		5 37 37	30 60 90	© △ ×	
p	Chromic acid	20 20	20 40	∆ ×	10	b	0	20	30	0	10	b	0		20	20	0	
Inorganic acid	Hypochlorous Acid	10 10	20 40	0 0	14	30	×	15	43	0	20	40	0	Strong acid ()	5	20 40	0 ×	
	Hydrobromic acid		-			-			-		40	30	O	Weak acid 🔘		-		
	Nitric acid	10 10	20 80	0	10	30	Ø	10	30	0	10	100	0		5 10	20 60	O ×	
	Hydroiodic acid	57 57	20 70	0 0	57	25	×		-		57	30	0			-		
	Sulfuric acid	3 3	20 100	0	6 5	30 100	© ×	5 5	30 70	0	5 5	30 100	× ©		90 30	20 90	0 0	
	Phosphoric acid	30 30	60 100	© △	15 5	30 b	0	5 5	30 b	0	5 5	30 60	0 0		85	90	Ø	
	Ammonia water	15	80	Ô	10	b	0	10	b	0	10	b	0		15	30	Ô	
		15	100	0	28 10	65	0	20	65	0	20 10	65	0		10			
	Potassium hydroxide		-		25	b b	0	10 25	b b	0	25	b b	0 0		10	20 90	© △	
-	Sodium hydroxide	20	80	Ø	20	30	Ô	20	30	0	20	30	0		10	20	Ø	
Alkali		20	100	0	20	b _	0	20	b _	0	20	b 93	0	Strong alkali × Weak alkali △	10	90 90	 0	
	Sodium hydroxide, Sodium hydroxide9 to 11% +Sodium chloride 15%		100	0									0					
	Potassium carbonate		-		5 35	b b	0	5 35	b b	0	5 35	b b	0 0		5 35	b b	0 0	
	Sodium carbonate	sat.	100	0	25	b	0	25	b	O	25	b	0		25	90	O	
	Zinc chloride		-		20	b	Δ	20	b	O	20	b	0	_		-		
	Aluminum chloride		-		25 25	25 25	× ×		-		10 25	b b	© ×	-		-		
	Ammonium chloride	35	40	O	25	b	Δ	25	b	O	25	b	O	-	25	90	O	
	Potassium chloride	sat.	60	0	sat.	60	0	sat.	60	0	sat.	60	0	-	20	90	0	
Chlorides	Calcium chloride	sat. sat.	80 100	0	25	b	0	25	b	0	25	b	0	-	25	90	0	
ວົ	Ferric chloride	20 20	40 60	0 0	30	b	×	30	b	×	30	b	0	-	20	60	O	
	Sodium chloride, 20% + Saturated Cl2 (Electrolysis solution)		100	0		90	×		90	×		90	0	-		20	Δ	
	Seawater, Magnesium		24	0	40	24	Δ	40		_	40	24	0	-		24	0	
	chloride	sat. 5	80 60	0	42 20	b	 ©	42	b	0	40 20	b	0		10	80 90	0 0	Delugrapulana may
Sulfates	Ammonium sulfate		00	0	sat.	30	0	sat.	30	0	sat.	30	0			00	0	Polypropylene may sometimes be eroded b ammonium sulfate crys
Sul	Potassium sulfate		-		10	b	0	10	b	0	10	b	O	_	10	90	O	
	Sodium sulfate		Corrsio sistanc		20	b	0	20	b	0	20	b	0	_	10	90	0	
Nitrates	Ammonium nitrate Sodium nitrate		good fo sual sa	or	20 50	b 	0	20	b 	0	20 50	b	0	-	10	90	0	
2	Sodium sulfite	-			20	b	0		_		20	b	0	_		_		
	Hydrogen peroxide	-			10	30	0		-		10	30	0	-	10	30	0	
Others	Sodium sulfide	30 20	90 80	0	2	60-90	×	2	60-90	Δ	15	30	0	-	5	90	Ø	
ō	Potassium bichromate				10	b	0	10	b	0	10	b	0	-		-		
	Sodium sulfide	60	80	0	10 10	b	0		-		10 10	b	0	-	10	90	0	
	Sodium bisulfate		20	0		b 30	∆ ×		- 30	Δ		b 30	00	-		20	×	
	Wet chlorine gas		20 40 60	∆ ×		50	^		30			30	9	-		20	_	
Gases	Sea water + Saturated Cl2		-			95	×		95	Δ		95	0	-		-		
Gas	Bromine gas		-			-	6		30	0		30	0	-		30	×	
	Hydrogen sulfide	-	- 80	O	-	20	Ô		-			20 30-90	0	-		- 80	O	
	Sulfurous acid gas		100	Õ		-			-				-	-			-	

		Holder mate								er material round tip			m	al O-ri ateria	al	Sensor body material			
	Poly	propy	lene	:	316 SS	;	На	stelloy	C	т	itaniur	n		ro rul FKM)			Ryton		Remarks
Acetaldehyde	Concent	'n Temp	Judge		'n Temp	Judge	Concen	ťn Temp	Judge	Concent	'n Temp	Judge	Concent			-	'n Temp		
	100	20 20	0	100 50	30 25	0										100	20	0	
Acetone				100	110	O		-			-		100	25	×	100	b	0	
Aniline	100	20	0	100	25	O		_			_			_		100	90	0	
Annine	100 100	70 100	0 4	100	20											100	90	0	
Ether	100	20	Δ	100	25	0		-			-			-	-	100	20	O	
Ethylene glycol	100 100	70 100	0	100	25	0		-			-			-			-		
Ethyl alcohol	96	70	0	100	b	0		-			-			-		100	90	Ø	
Methyl chloride	100	20	×	100	25	0		_			_			-			-		
Glacial acetic acid	100	70	0		_			_			_		100	24	×	100	20	O	
	100	100 70	0	100	25	0				<u> </u>						<u> </u>			
Glycerin	100	70 100	0	100	20	U		-			-			-			-		
	100	20	0													100	20	Ø	
Chlorophenol	100	70	\triangle		-			-			-			-					
Xylene	100	100 20	×		_			_			_			_		100	20	0	
Chlorobezene	100	20	×	<u> </u>				_			_			_			-		
	100	100	×	100			100			100		<u> </u>				100		^	
Chloroform	100	20 20	×	100	b	0	100	b	O	100	b	O		-		100	90	Δ	
Dioxane	100	20 70	Δ		_			_			_			_		100	90	O	
Dioxane	100	100	×													100	50	۲	
Dichloroethare	100	70	×		-			-			-			-			-		
Ethyl nitrate	100 100	20	© △	100	105	O		-			-			-		100	90	0	
Carbon tetrachloride	100	20	×	90	b	\triangle		-		90	b	O	100	24	×		-		
Trichloroethylene	100	20	×	100	b	0	100	b	O	100	b	O		-		100	90	×	
Toluene	100	20	×		-			-			145	Ø		-		100	90	O	
Carbon tetrachloride Trichloroethylene Toluene Benzophenone Benzaldehyde	100	20	0					_						-			-		
Benzaldehyde	100 100	70 100	O ×		-			-			-			-		100 100	20 90	$\stackrel{\triangle}{\times}$	
Benzyl alcohol benzene	100	20	O	100	30	Δ		-		100	30	0	100	25	0	100	90	O	
	10	70	0	37	b	O	37	b	0	37	b	O		_			_		
Fomaldehyde	10	100	0																
Methylnaphthelen	100	20	0	<u> </u>	-			-			-			-			-		
Methyl ethyl ketone	100	20 70	\triangle		-			-			-			-		100	90	O	
Methyl alcohol	100	20	0	100	25	0		-			-			-		100	25	Ø	
Nitrobenzene	100	20 70	0		_			_			_			_		100	90	×	
	100 100	70 100																	
Apotio poid	100	20	0	10	b	0				10	b	O					_		
Acetic acid	100 100	70 100	∆ ×					-						-			-		
Phenol	100	20	0	95	30	O	95	30	0	95	30	Ô		_		100	90	Δ	
		100	0																
Benzonic acid	100	20	0	<u> </u>	-			-			-			-		100	- 20	Ô	
Motor oil	100	20 70	0		-			-			-			-		100	20	U	
	100	100	Δ	<u> </u>															
Petroleum ether	100	20	0		-			-			-	0		-		100	20	0	
Kerosene	100 100	20 70	O ×		-			-			101	0		-		100	20	0	
	10	40	O	50	100	Δ	50	100	Δ	50	100	O							
Tartaric acid	10 10	60 80	0 4											-			-		
Oil and fats	100	70	Ô	100	25	Ø	100	180	O	100	180	O		-			-		
	100	20	×	100	25	0		_			_		100	25	0		_		

(Note): "b" refers to the boiling point.

CAUTION -

Select the material of wetted parts with careful consideration of process characteristics. Inappropriate selection may cause leakage of process fluids, which greatly affects facilities. Considerable care must be taken particularly in the case of strongly corrosive process fluid such as hydrochloric acid, sulfuric acid, hydrogen sulfide, and sodium hypochlorite. If you have any questions about the wetted part construction of the product, be sure to contact Yokogawa.

Enquiry Specifications Sheet for pH/ORP Sensor

For enquires on the Yokogawa pH/ORP sensors, please tick (v) the appropriate box \Box and write down the relevant information in the blanks.

1.	General Information Company name	,											
		Department;											
	Measurement location	□ Indication, □ Recording, □ Alarm, □ Control											
					101								
	Power supply	,		<u>VAC, HZ</u>									
2	Measurement Condition	ons											
	(1) Process temperature	e;	to	Normally	[°C]								
	(2) Process pressure	;	to	Normally	[kPa]								
	(3) Flow rate	;	to	Normally	[L/min]								
	(3) Flow rate(4) Flow speed	;	to	Normally	[m/s]								
	(5) Slurry or contaminar	nts	; 🗆 No, 🗆	Yes									
	(6) Name of process flu	id	;										
	(6) Name of process flu(7) Components of proc	ess fluid	;										
	(8) Others ;												
3.	Installation Site												
	(1) Ambient temperature	(1) Ambient temperature ;											
	(2) Location	; 🗆 Ou	tdoors,⊡ Indoo	ors									
	(3) Others ;												
4.	Requirements												
	(1) Measuring range(2) Combined transmitte												
	(2) Combined transmitte	er			PH450, 🗆 PH400,	$\Box OR400, \Box PH100,$							
	(2) System configuration	a a ala ativ			ranamittar/Canva	rtar 🗆 Claaning avotam							
	(3) System configuration	on selection; ☐ Sensor, ☐ Holder, ☐ pH/ORP Transmitter/Converter, ☐ Cleaning system, ☐ Terminal box, ☐ Accessories											
	(4) Sensor cable length				15 m □ 20 m □	m							
	(5) Sensor operating pre												
	(6) Type of holder	coourc	: 🗆 Guide ni	pe, \Box Submersion, \Box F		Suspension							
						•							
	(7) Cleaning method			ning 🗆 Ultrasonic clean	ning II .let cleanir	na 🗆 Brush cleaning							
	(8) Sample temperature	•	: □ -5 to 10	5° C, \Box -5 to 100°C, \Box -	5 to 80°C								
	(9) Others ;			, <u>-</u> • • • • • • •, -									