XLE OCS Model:

HE-XE103 / HEXE220C113 / HEXE220C013 12 Digital DC Inputs / 12 Digital Outputs
2 Analog Inputs (Medium Resolution)

XLE OCS Model:

HE-XE104 / HEXE220C114 / HEXE220C014
24 Digital DC Inputs / 16 Digital Outputs
2 Analog Inputs (Medium Resolution)

1 Specifications

Specifications								
Digital DC Inputs	XLE103	XLE104		Digital DC Outputs	XLE103	XLE104		
Inputs per Module	12 including 4 configurable HSC inputs	24 including 4 configurable HSC inputs		Outputs per Module	12 including 2 configurable PWM outputs	16 including 2 configurable PWM outputs		
Commons per Module	1			mmons per dule	-			
Input Voltage Range	$12 \mathrm{VDC} / 24 \mathrm{VDC}$			put Type	Sourcing / 10 K Pull-Down			
Absolute Max. Voltage	35 VDC Max.			olute Max. age	28 VDC Max.			
Input Impedance	$10 \mathrm{k} \Omega$		Output Protection		Short Circuit			
Input Current	PositiveLogic \quad Negative Logic		Current per point		0.5 A			
Upper Threshold	0.8 mA	-1.6 mA	Max. TotalCurrent		4 A Continuous			
Lower Threshold	0.3 mA	-2.1 mA		. Output ply Voltage	30 VDC			
Max Upper Threshold	8 VDC			imum Output ply Voltage	10 VDC			
Min Lower Threshold	3 VDC			Voltage at Rated rent	0.25 VDC			
OFF to ON Response	1 ms			. Inrush rent	650 mA per channel			
ON to OFF Response	1 ms		Min. Load		None			
HSC Max. Switching Rate	10 kHz Totalizer/Pulse,Edges 5 kHz Frequency/Pulse,Width 2.5 kHz Quadrature		OFF to ON Response		1 ms			
Analog Inputs, Medium Resolution	XLE103	XLE104	ON to OFF Response		1 ms			
Number of Channels	2	2	Output Characteristics		Current Sourcing (Pos logic)			
Input Ranges Safe input voltage range Input Impedance (Clamped @ -0.5 VDC to 12 VDC)	$\begin{gathered} 0-10 \mathrm{VDC} \\ 0-20 \mathrm{~mA} \end{gathered}$							
	$\begin{gathered} 4-20 \mathrm{~mA} \\ -0.5 \mathrm{~V} \text { to }+12 \mathrm{~V} \end{gathered}$		General Specifications					
	$\begin{aligned} & \frac{\text { Current Mode: }}{100 \Omega} \\ & \text { Voltage Mode: } \\ & 500 \mathrm{k} \Omega \end{aligned}$		Required Power (Steady State)		130 mA @ 24 VDC			
				2 Low Temp ion	390mA with heater operating			
Nominal Resolution \%Al full scale Max. Over-Current	$\begin{gathered} 10 \text { Bits } \\ 32,000 \text { counts } \\ 35 \mathrm{~mA} \end{gathered}$		Required Power (Inrush)		30 A for 10	ms @ 24 VDC 30 VDC		
Conversion Speed	All channels converted once per ladder scan		Relative Humidity		5 to 95\% Noncondensing			
Max. Error at $25^{\circ} \mathrm{C}$ (excluding zero)	$\begin{aligned} & 4-20 \mathrm{~mA} \\ & 0-20 \mathrm{~mA} \\ & 0-10 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 1.00 \% \\ & 0.50 \% \end{aligned}$	Operating Temperature		$0^{\circ} \mathrm{C}$ -40°	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$		
Additional error for temperatures other than $25^{\circ} \mathrm{C}$	TBD		Terminal Type		Screw Type, 5 mm Removable			
			CE	See Compliance Table at http://www.heapg.com/Pages/TechSupport/Prod uctCert.html				
Filtering	160 Hz hash (noise) filter 1-128 scan digital running average filter		UL					
			Weight		12.5 oz. (354.36 g)			
				Clock Accuracy	+/- Seven Minutes/Month at 20C			

Note: Highest usable frequency for PWM output is 65 KHz

Note: Max. panel thickness: 5 mm .

3
 Ports / Connectors / Cables

Note: The case of the XLe is black, but for clarity, it is shown in a lighter gray color.

To Remove Back Cover:
Unscrew 4 screws located on the back of the unit and remove back cover.

I/O Jumpers (Not Shown): I/O Jumpers (JP) are located internally. To access, remove back cover of unit.

Wiring Connectors (J1-J4), I/O Jumpers (JP1-3), and
External Jumpers (RS-485) are described in the Wiring and Jumpers section of this document.

Power Connector
Power Up:
Connect to Earth Ground. Apply 10 - 30 VDC Screen lights up.
Torque rating 4.5-7 Lb-In ($0.50-0.78 \mathrm{~N}-\mathrm{m}$)

CAN Connector
Use the CAN Connector when using CsCAN network.

Torque rating $4.5-7 \mathrm{Lb}-\mathrm{In}$ ($0.50-0.78 \mathrm{~N}-\mathrm{m}$)

Section 3 continued

Memory Slot:

Uses Removable Memory for data logging, screen captures, program loading and recipes.
Horner Part No.: HE-MC1

Serial Communications:

MJ1: (RS-232 / RS-485) Use for Cscape programming and Application-Defined Communications.

MJ2: (RS-232 / RS-485) Use for Application-Defined Communications.

$4 \quad$ Wiring and Jumpers

- Wire according to the type of inputs / outputs used and select the appropriate jumper option. Use Copper Conductors in Field Wiring Only, $60 / 75^{\circ} \mathrm{C}$

following wire type or equivalent:
Belden 3084, 24 AWG ($0.2 \mathrm{~mm}^{2}$) or larger.

External DIP Switch Settings (or Jumpers Settings)

4.3
 Wiring Examples

Note: The wiring examples show Positive Logic input wiring.

J1 Orange	XE103 / XE104 Name
11	IN1
12	IN2
13	IN3
14	IN4
15	IN5
16	IN6
17	IN7
18	IN8
$H 1$	HSC1 / IN9
H2	HSC2 / IN10
H3	HSC3 / IN11
$H 4$	HSC4 / IN12
A1	Analog IN1
A2	Analo IN2
OV	Ground

J2 Black	XE103	XE104
OV	Ground	
V+	V+ ${ }^{*}$	
NC	No Connect	OUT13
Q12	OUT12	
Q11	OUT11	
Q10	OUT10	
Q9	OUT9	
Q8	OUT8	
Q7	OUT7	
Q6	OUT6	
Q5	OUT5	
Q4	OUT4	
Q3	OUT3	
Q2	OUT2 / PWM2	
Q1	OUT1 / PWM1	
V+ ${ }^{*}$ Supply for Sourcing Outputs		

J3 Orange	XE104
$I 13$	IN13
$I 14$	IN14
115	IN15
116	IN16
117	IN17
118	IN18
119	IN19
120	IN20
121	IN21
122	IN22
123	IN23
$I 24$	IN24
$0 V$	Ground

J1 Orange Positive Logic Digital In

Loop Power requirements are determined by the transmitter specification.

XE104 J4 Orange Positive Logic Digital Out

J4 Orange	XE104
Q16	OUT16
Q15	OUT15
Q14	OUT14

Filter Constant sets the level of digital filtering according to the following chart.

Digital Filtering. The illustration above demonstrates the effect of digital filtering (set with Filter Constant) on module response to a temperature change.

6 I/O Register Map

Registers	Description
\% 11 to \% 124	Digital Inputs
\%132	Output Fault
\%125 to \%131	Reserved
\%Q1 to \%Q16	Digital outputs
\%Q17	Clear HSC1 accumulator to 0
\%Q18	Totalizer: Clear HSC2 Quadrature 1-2: Accumulator 1 Reset to max - 1
\%Q19	Clear HSC3 Accumulator to 0
\%Q20	Totalizer: Clear HSC4 Quadrature 3-4: Accumulator 3 Reset to $\max -1$
\%Q21 to \%Q32	Reserved
\%Al1 to \%Al4	Analog inputs
\%Al5, \%Al6	HSC1 Accumulator
\%AI7, \%Al8	HSC2 Accumulator
\%Al9, \%Al10	HSC3 Accumulator
\%Al11, \%Al12	HSC4 Accumulator
\%AQ1, \%AQ2	PWM1 Duty Cycle
\%AQ3, \%AQ4	PWM2 Duty Cycle
\%AQ5, \%AQ6	PWM Prescale
\%AQ7, \%AQ8	PWM Period
\%AQ9 to \%AQ14	Analog outputs
Note: Not all XLe units contain the I/O listed in this table.	

Common Cause of Analog Input Tranzorb Failure
A common cause of Analog Input Tranzorb Failure on Analog Inputs Model 2, 3, 4 \& 5: If a 4-20mA circuit is initially wired with loop power, but without a load, the Analog input could see 24 Vdc . This is higher than the rating of the tranzorb. This can be solved by NOT connecting loop power prior to load connection, or by installing a low-cost PTC in series between the load and Analog input.

NOTE†: Refers to Model 2 - orange Models 3 \& 4 - J1 and Model 5 - 20mA Analog In

When found on the product, the following symbols specify:

Warning: Electrical | Whock Hazard. |
| :--- |
| Sharning: Consult |
| User documentation. |

This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D or Non-hazardous locations only
WARNING - EXPLOSION HAZARD - Substitution of components may impair suitability for Class I, Division 2.
AVERTISSEMENT - RISQUE D'EXPLOSION - LA SUBSTITUTION DE COMPOSANTS PEUT RENDRE CE MATERIAL INACCEPTABLE POUR LES EMPLACEMENTS DE CLASSE 1, DIVISION 2.

WARNING - EXPLOSION HAZARD - Do not disconnect equipment unless power has been switched off or the area is known to be non-hazardous.
AVERTISSEMENT - RISQUE D'EXPLOSION - AVANT DE DECONNECTOR L'EQUIPMENT, COUPER LE COURANT OU S'ASSURER QUE L'EMPLACEMENT EST DESIGNE NON DANGEREUX.

WARNING: To avoid the risk of electric shock or burns, always connect the safety (or earth) ground before making any other connections.
WARNING: To reduce the risk of fire, electrical shock, or physical injury it is strongly recommended to fuse the voltage measurement inputs. Be sure to locate fuses as close to the source as possible.

WARNING: Replace fuse with the same type and rating to provide protection against risk of fire and shock hazards.
WARNING: In the event of repeated failure, do not replace the fuse again as a repeated failure indicates a defective condition that will not clear by replacing the fuse.
WARNING: Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equipment. Read and understand this manual and other applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference.
2. This device must accept any interference received, including interference that may cause undesired operation.

- All applicable codes and standards need to be followed in the installation of this product.
- Adhere to the following safety precautions whenever any type of connection is made to the module:
- Connect the safety (earth) ground on the power connector first before making any other connections.
- When connecting to electric circuits or pulse-initiating equipment, open their related breakers.
- Do not make connections to live power lines.
- Make connections to the module first; then connect to the circuit to be monitored.
- Route power wires in a safe manner in accordance with good practice and local codes.
- Wear proper personal protective equipment including safety glasses and insulated gloves when making connections to power circuits.
- Ensure hands, shoes, and floor are dry before making any connection to a power line.
- Make sure the unit is turned OFF before making connection to terminals.
- Make sure all circuits are de-energized before making connections.
- Before each use, inspect all cables for breaks or cracks in the insulation. Replace immediately if defective.
- Use Copper Conductors in Field Wiring Only, $60 / 75^{\circ} \mathrm{C}$

Technical Support

For assistance and manual updates, contact Technical Support at the following locations:

North America:
(317) 916-4274
www.heapg.com
email:
techsppt@heapg.com

Europe:

(+) 353-21-4321-266
www.horner-apg.com
email: techsupport@hornerirl.ie

