PROJECT PLANNING MANUAL

Laser scanner Planning aids for perimeter and object monitoring

EN

This work is protected by copyright. Any rights derived from the copyright shall be reserved for SICK AG. Reproduction of this document or parts of this document is only permissible within the limits of the legal determination of Copyright Law. Alteration or abridgment of the document is not permitted without the explicit written approval of SICK AG.

Contents

1	Abou	t this doc	ument	6
	1.1	Functio	on of this document	6
	1.2	Target	group	6
	1.3	Informa	ation depth	6
	1.4	Abbrev	iations used	6
	1.5	Symbol	ls used	6
	1.6	Legal n	notices	7
2	Intro	luction		8
2	2.1		ew of detection systems	
	2.2		er scanner	
		2.2.1	Pulse time method	
		2.2.2	Multi-echo method	
		2.2.3	Measuring frequency	
		2.2.4	Remission (effect of the object surface)	
		2.2.5	Angle of incidence and reflection	
		2.2.6	Beam divergence and object size	
		2.2.7	Beam expansion	
2	Leeer		andiations	10
3	3.1		applications ring fences, double fences, and walls	
	3.2		ring of open spaces	
	3.2 3.3		a management and object tracking in open spaces	
	3.3 3.4		shell protection (facades)	
	3.5		rotection	
	3.6	•	monitoring and wall penetration protection	
	3.7	-	g protection	
_	-			
4	Deteo	ction rang	ges	23
5	Devic	es and ac	ccessories	24
	5.1	Selecti	ng the right detector	24
	5.2	Device	overview	
		5.2.1	VdS-compliant devices	
		5.2.2	Indoor devices (without VdS certification)	
		5.2.3	Outdoor devices	29
	5.3		ories	
		5.3.1	Weather hoods	
		5.3.2	Mounting kits	
		5.3.3	Fine-adjustment unit	
		5.3.4	Post and wall brackets	
		5.3.5	Connecting cables	
		5.3.6	Connection boxes	
		5.3.7	CAN modules	
		5.3.8	Power supply unit	
		5.3.9	Scan finder	40
-				
6	Proje	ct plannir	ng	41
6	Proje 6.1	-	ng is of the threat situation	
6	-	Analysi		41
6	6.1	Analysi Prelimi	is of the threat situation	41 42

6.4		ing and connecting cables	
	6.4.1	Voltage supply	
	6.4.2	Connecting cables	
	6.4.3	Using a connection box	
6.5		ion accuracy and analysis strategy	
	6.5.1	Working with filters	
	6.5.2	Defining analysis fields and cases	
	6.5.3	Taking account of object sizes	
	6.5.4	Setting the alarm sensitivity	
	6.5.5	Using contour as reference for tamper-proofing	
	6.5.6	Tamper-proofing against shadowing and dazzle	
	6.5.7	Automatic field adjustment	
	6.5.8	Teaching in/updating fields automatically (Easy Teach)	61
	6.5.9	Activating/deactivating analysis cases (day and night mode)	66
6.6	Configu	uration of the signaling method	67
	6.6.1	Overview of digital inputs	
	6.6.2	Switching laser scanners to sharp/not sharp	67
	6.6.3	Switching the laser scanner to walk-through test mode	68
	6.6.4	Volt-free semiconductor outputs in relay function (overview)	69
	6.6.5	Circuitry without resistance monitoring	71
	6.6.6	Circuitry with resistance monitoring	72
	6.6.7	Tamper-proofing	73
	6.6.8	Working in expert mode	73
	6.6.9	Controlling cameras	74
6.7	Pin ass	signments	77
	6.7.1	LMC12x/LMC12x	77
	6.7.2	TiM320	78
	6.7.3	TiM351/TiM361	79
	6.7.4	LMC13x/LMS13x, LMS141 core/LMS14x prime	
	6.7.5	LMS531 Lite	81
	6.7.6	LMS531 PR0	82
	6.7.7	Connection boxes	83
6.8	Cleanir	ng	87
Scala	hle solut	ions with OPC	88
7.1		akes integration easier	
7.2		ata handling with the SICK OPC server	
	-		
-	-	ng examples	
8.1		on guide	
	8.1.1	Device selection	
	8.1.2	Product characteristics	
8.2	,	/double fence protection	
	8.2.1	Monitored area	
	8.2.2	Installation situation	
	8.2.3	Accessories	
	8.2.4	Recommended settings	
8.3		e protection	
	8.3.1	Monitored area	
	8.3.2	Installation situation	-
	8.3.3	Accessories	
	8.3.4	Recommended settings	100

7

8

Contents

	8.4	Open sp	pace protection	
		8.4.1	Monitored area	101
		8.4.2	Mounting	102
		8.4.3	Accessories	
		8.4.4	Recommended settings	103
	8.5	Roof pro	otection	
		8.5.1	Monitored area	
		8.5.2	Installation situation	
		8.5.3	Accessories	
		8.5.4	Recommended settings	
	8.6	Painting	g protection	105
		8.6.1	Monitored area	105
		8.6.2	Installation situation	105
		8.6.3	Accessories	106
		8.6.4	Recommended settings	
	8.7	Parame	ter assignment for SICK OPC server	108
9	Annex			110
	9.1	List of t	ables	110
	9.2	List of f	igures	111
	9.3	Keywor	ds index	114

1 About this document

1.1 Function of this document

This document provides an introduction to laser-guided object monitoring and explains the technology behind non-contact detection systems.

It provides all the information required for planning and installing laser-guided detection systems from SICK.

1.2 Target group

This project planning manual is intended for those planning and setting up safety and security systems, who wish to take advantage of the benefits that laser technology provides in terms of protection and require detailed information about the technology and its practical implementation.

1.3 Information depth

This project planning manual contains information on the following topics:

- 2D laser scanner
- Laser scanner applications
- Detection ranges
- Devices and accessories
- Project planning
- Scalable solutions with OPC
- Project planning examples
- NoteThe laser scanners mentioned in this document are not safety devices for human
protection and it therefore do not comply with any safety standards.For safety applications, please contact SICK AG.

1.4 Abbreviations used

- LMC Laser measurement system certified = VdS-certified laser scanner from SICK AG
- LMS Laser measurement sensor = laser scanner from SICK AG
- **OPC** The most widely accepted industrial communication standard
- VdS Formerly the "Verband der Sachversicherer e.V." [Association of Property Insurers]. The technical departments of the former insurers' association were taken over in 1997 by VdS Schadenverhütung GmbH, which is a subsidiary of the Gesamtverband der Deutschen Versicherungswirtschaft e.V. (GDV).

1.5 Symbols used

Recommendation Recommendations are designed to assist you in the decision-making process with respect to the use of a certain function or technical measure.

Note Notes provide information about the features of a device or application.

Take action Instructions for taking action are indicated by an arrow. Carefully read and follow the instructions for action.

Software notes indicate where to make the appropriate settings in the SOPAS configuration software.

1.6 Legal notices

The application graphics and project planning examples contained in this manual, and their recommended settings, are not legally binding. They make no claim to be accurate or complete. They serve only as product demonstrations and do not represent customer-specific solutions in any way.

The application graphics and project planning examples and their recommended settings are not a suitable replacement for necessary technical advice provided by a specialist. The specifications given in the product data sheets for the products described in this manual take precedence.

SICK cannot accept liability for the any damage occurring outside the scope of the conditions described below. We retain the right to make changes to the application graphics and project planning examples, and their recommended settings, at any time without prior notice.

Liability

SICK will only accept liability for damage, for whatever legal reasons, in the following cases:

- for intent,
- gross negligence of the bodies or management employees,
- culpable injury to life, limb or health,
- faults which SICK maliciously failed to disclose,
- if SICK has offered a guarantee of a certain property of the supplied product,
- if SICK has offered a guarantee that the supplied product would have a certain property for a specific duration of time, and
- if it is found to be liable for personal injury or damage to private property under the German Product Liability Act.

If there is a breach of essential contractual obligations, SICK accepts liability in the case of gross negligence of non-management employees and in the case of slight negligence; however in the latter case liability is limited to contractual damage that can be reasonably foreseen.

Essential contractual obligations are duties that protect the contractual legal positions of a party, which are intended to protect said party under the content and purpose of the contract.

Furthermore, essential contractual obligations are duties that must be performed in order for the contract to be properly fulfilled and which a contractual party expects and can expect to be met.

Further claims to compensation are excluded.

2 Introduction

2.1 Overview of detection systems

Conventional detection methods are presented here in order to better demonstrate the advantages of laser-guided detection methods.

Infrared sensors Infrared sensors respond to temperature changes. They continuously receive infrared radiation (heat) from the environment and save it as a reference. If a person enters the area monitored by the infrared sensor, the change in infrared radiation is detected and an alarm is triggered.

Infrared technology may be less expensive, however it is prone to false alarms triggered by other heat sources or sudden light incursion.

Radar sensorsRadar sensors do not detect temperature changes in the environment. Electromagnetic
waves are used for detection, where motion triggers the alarm (in addition to people this
can include animals, vehicles, machine parts, or even trees and bushes in the wind).

The monitored area cannot be strictly defined at its edges. Areas are very difficult to monitor.

Infrared sensors are relatively insensitive to radial movement. Radar sensors, in contrast, have maximum sensitivity to this type of movement. However, infrared sensors are sensitive to orthogonal and tangential movement, whereas radar sensors are not.

CCTV monitoring with analog or digital cameras serves more for **identification** than detection, which is frequently perceived to be an intrusive breach of the rights of the individual and therefore negatively influences the feeling of safety.

The quality of the monitoring greatly depends on the lighting at the time. Furthermore, complete monitoring of areas or facades requires many cameras and the necessary infrastructure to support these conditions.

Laser monitoring

Detection systems utilizing laser scanners are extremely **reliable** and **discreet**. The active scanning laser scanner is a **non-contact** two-dimensional detection system that scans a freely programmable area. It emits an invisible infrared laser beam, so that **detection is independent** of **ambient light**, i.e., it can even function in absolute darkness.

As soon as a person enters the monitored area, the laser scanner sends a signal which can be used to **trigger various actions**, such as alerting the main office of the security services or the police, setting off a silent alarm or audible siren, switching on lighting, or activating a follow-up system for controlling dome cameras.

Detection systems utilizing laser scanners function **reliably** regardless of weather, lighting conditions or the size and properties of detected objects. They are also tamperproof and able to trigger alarms via volt-free outputs.

Particularly for outdoor applications, a **high level of reliability** due to a low rate of false alarms is a key assessment factor. In the case of outer shell and open terrain protection, laser technology has frequently proven to be both an economically viable alternative technology to CCTV as well as a sensible enhancement to this. Often one mounting point alone is sufficient for observing and monitoring large areas.

Monitoring fields with easily definable parameters enable the detection zone to be defined exactly, preventing false alarms. The light curtain can be precisely positioned and tailored to the monitoring situation in question. This also circumvents the need for additional investment in mechanical barriers.

The **detection accuracy** can also be configured in terms of the size and speed of detected objects in each monitored area.

The solution is scalable and can be used for the protection of private buildings all the way to large industrial facilities. The OPC interface also allows integration into existing high-security systems.

Advantages at a glance

- Various configuration options
- Panoramic monitoring (horizontal security up to 270°)
- Detection independent of illumination or time of day
- Definition of clearly definable monitored areas
- Definition of the size and speed of detected objects in each monitored area
- Can be combined with CCTV via digital switching outputs
- Blanking of environmental factors (fog, rain, etc.)
- Analysis of monitoring fields using intelligent algorithms
- Integration via OPC interface

2.2 2D laser scanner

Laser scanners are electro-optical sensors that use non-contact laser beams to scan the outline of their surroundings on a plane. They measure their surroundings in twodimensional polar coordinates.

A rotating mirror is used to deflect the pulsed light in a horizontal area. Due to the rotation of the mirror, a multitude of single measurements are merged to form an entire scan of an area. The scanning sector is up to 270° depending on the laser scanner used.

Fig. 1: 2D laser scanner principle of operation

SICK laser scanners have a scanning frequency of up to 100 Hz. A laser pulse and thus a measurement is triggered continuously after each angle increment up to 0.167°.

The detection range of the laser scanners depends on the performance of the device used, the environment, the size of the detected object, and the remission, i.e., the nature of the surface of the detected object, which reflects the laser beam.

2.2.1 Pulse time method

The measurement technology of the 2D laser scanners is based on **time-of-flight measurement**. The laser emits a pulsed beam using a laser diode. If a laser pulse hits an object or person, it is reflected on the surface of the object or person in question. The reflection is registered by a photo-diode in the laser scanner's receiver.

The sender and receiver are thus housed together in the laser scanners, making these compact measurement systems that require less space and installation time in comparison to other solutions.

With the **pulse time method**, the distance between the sensor and the object is calculated by measuring the time interval between the emission of the laser pulse and the pulse being received again. Radar systems apply this "pulse time-of-flight measurement" principle in a similar way.

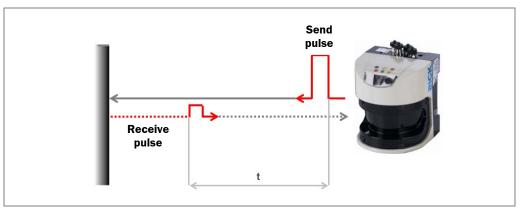
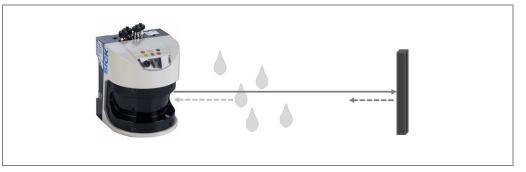



Fig. 2: Pulse time-of-flight measurement principle of operation

2.2.2 Multi-echo method

Interference factors like rain, fog, snow, or dust can typically influence a laser scanner's measurements and reduce the detection range. However, thanks to multi-echo technology, SICK laser scanners can analyze **multiple reflective pulses**. Additional reflective pulses occur when the laser beam hits smaller particles such as snowflakes or raindrops.

Through the reception of several echoes for each emitted laser pulse, object detection can be optimized and refined significantly.

This technology is also known as the **multiple pulse time method**.

2.2.3 Measuring frequency

The measuring frequency is the number of measurements per second in hertz. With each revolution of the mirror, a scan is made. A measurement may consist of one or more scans and thus be **analyzed multiple times**.

2.2.4 Remission (effect of the object surface)

The received signal also provides information about remission of the detected object. Remission describes the part of the laser pulse that is reflected. Depending on the surface composition (structure, color), each material has its own specific remission. When a laser pulse hits a surface, energy is partly absorbed by the material.

The received signal from a perfectly diffuse reflection from a white surface corresponds to a remission of 100%. By this definition, surfaces that reflect the light in bundles (reflecting surfaces, reflectors) have remissions of over 100%.

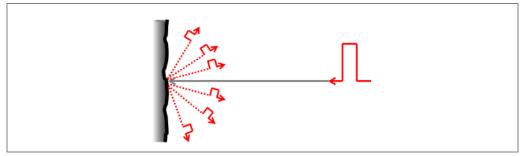


Fig. 3: Reflection of light on the surface of the object

Most surfaces produce a diffuse reflection of the laser beam in all directions. The structure and color of the surface determine how well the laser beam is reflected. Bright surfaces reflect the laser beam better than dark surfaces and can be detected by the laser scanner over greater distances.

Brilliant white plaster reflects approx. 100% of the light, while black foam rubber reflects approx. 2.4%. On very rough surfaces, part of the energy is lost due to shadowing. The scanning range of the laser scanner is therefore reduced.

ConclusionThe maximum detection range of the laser scanner greatly depends on the remission of
the object. The higher the remission, the greater the possible measuring scanning range.
The scanning range data for detection solutions refers to a remission of 10%.

2.2.5 Angle of incidence and reflection

The angle of reflection corresponds to the angle of incidence. If the laser beam hits a surface at right angles, the energy is optimally reflected. If the laser beam hits a surface at an oblique angle, energy and range are lost accordingly.

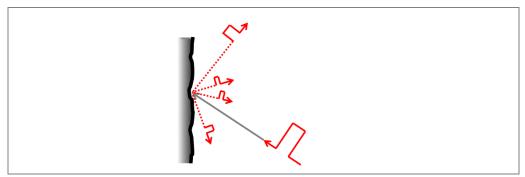
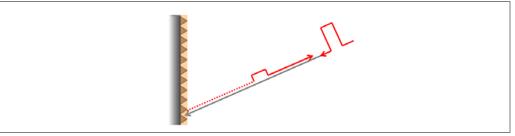



Fig. 4: Angle of reflection

If the reflective energy is greater than 100% (basis: Kodak Standard), the beam is not reflected diffusely in all directions; instead it is reflected in a targeted way. Thus a large part of the emitted energy can be received by the laser distance measurer. Plastic reflectors (cat's eyes), reflective tape, and triple prisms have these properties.

The laser beam is almost completely deflected on reflective surfaces. This means that an object hit by the deflected beam may be detected instead of the reflective surface.

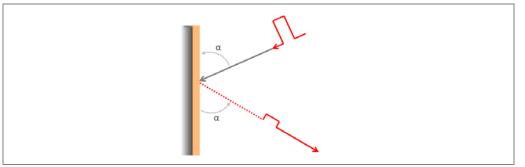


Fig. 6: Reflective surfaces

2.2.6 Beam divergence and object size

For an object to be detected reliably, it must be completely hit by the laser beam once. If it is only partially hit, less energy will be reflected from the object. To be sure that an object is completely hit, it must be at least as large as the diameter of the laser beam.

Objects that are smaller than the diameter of the laser beam cannot reflect the laser light's full energy. The energy of the non-reflected part of the laser light is lost. This means the scanning range is less than would theoretically be possible due to the reflective property of the object's surface.

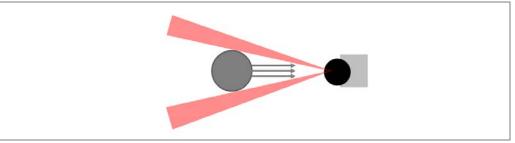


Fig. 7: Beam divergence and object size

Conclusion For reliable measurement, an object needs to be hit several times. Furthermore, the object to be detected should be larger than the minimum object size.

2.2.7 Beam expansion

As the distance increases, the laser beam expands. As a result, the diameter of the measuring point increases on the surface of the object.

To avoid false alarms, it is important to prevent the laser beam (or part of it) from hitting the floor or the facade.

If the ground or the facade is detected, this may not be noticed when mounting. However, if the surface composition changes subsequently due to frost, moisture, snow, or rain, it can result in measuring points which then lead to false alarms.

LMS1xx beam expansion

The range-dependent diameter of the measuring point corresponds to the distance (mm) * 0.015 rad + 8 mm.

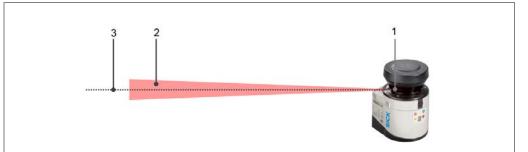


Fig. 8: LMS1xx beam expansion

No.	Meaning	
1	Beam diameter on the optics cover = 8 mm	
2	Expanded laser beam	
3	Optical axis	

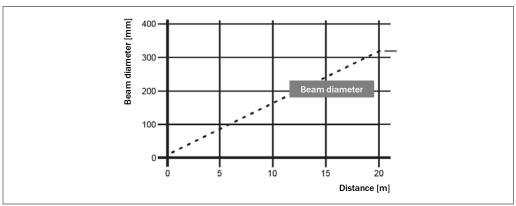


Fig. 9: LMS1xx beam diameter

LMS5xx beam expansion

The range-dependent diameter of the measuring point corresponds to the *distance (mm)* * 0.011 rad + 13 mm.

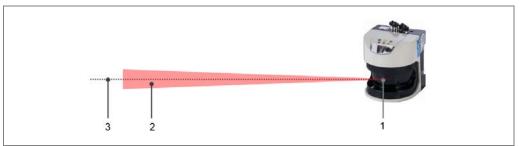


Fig. 10: LMS5xx beam expansion

No.	Meaning	
1	Beam diameter on the front screen = 13 mm	
2	Expanded laser beam	
3	Optical axis	

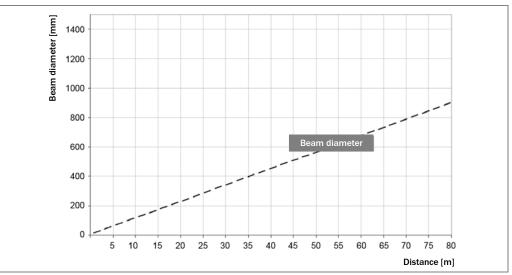
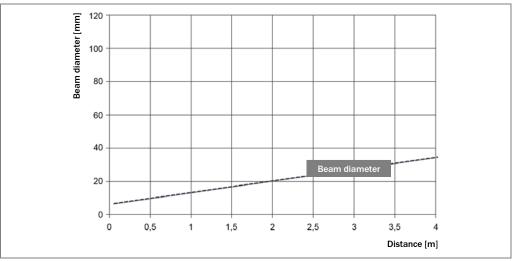
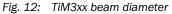




Fig. 11: LMS5xx beam diameter

TiM3xx beam expansion

3 Laser scanner applications

LMS and LMC laser scanners are suitable for the vertical monitoring of facades, perimeter walls, building walls, or windows, and the horizontal monitoring of open spaces such as lawns and fields, outdoor spaces, pedestrian paths, and roads. They are also suitable for the monitoring of roofs and ceilings. People or objects entering the detection range of the laser scanner are reliably detected. People reaching into and penetrating the detection range with or without tools are also detected depending on distance, as are objects or people passing over or through the range.

The sensor also provides good detection of people and vehicles moving across an area (walking, running, crawling, or driving).

3.1 Monitoring fences, double fences, and walls

Fences and walls are monitored diagonally and vertically (1). If a monitoring field is breached, an alarm is triggered. The sensor uses the measuring data with which it has been provided to determine the location.

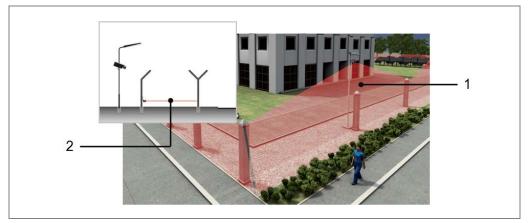


Fig. 13: Monitoring fences, double fences, and walls

Unlike single fences, which use vertical or diagonal area monitoring, with a double fence horizontal monitoring can also be used (2).

Overview of tasks and benefits of laser scanners

- Prevention of undetected intrusion into an area
- Detection of events at the perimeter of an area (fence protection, forecourt protection)
- Protection and/or monitoring of entrances
- Excavation protection (with horizontal and diagonal setup)
- Large monitoring area
- As many surrounding contours as desired can be stored as references
- No impairments from surrounding lighting
- Blanking of fixed-position obstacles (e.g., wall constructions)

3.2 Monitoring of open spaces

SICK laser scanners are usually used horizontally for the monitoring of open spaces. If necessary, several monitoring areas can be defined for each laser scanner (1).

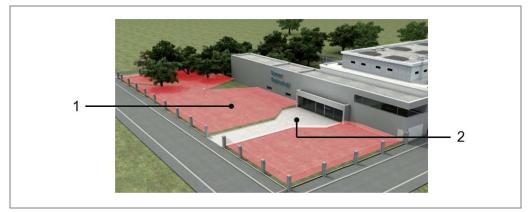


Fig. 14: Monitoring of open spaces

Approach roads and access paths can be blanked (2). At night, the system can switch to full monitoring.

Overview of tasks and benefits of laser scanners

- Real-time monitoring up to 270°
- Precise demarcation possible
- Insensitive to interference from movements outside of the monitoring field
- Blanking of certain areas possible
- Easy adjustment to changes in monitoring conditions
- Shape of monitoring fields can be defined by user as required
- Coverage of large areas
- Separate alarm signals and camera control
- Can also be installed on buildings with adjacent monitored areas

3.3 Camera management and object tracking in open spaces

Large open spaces cannot be monitored at all times with just a camera. Intelligent video monitoring combined with a laser sensor system will bridge any security gaps.

The laser scanner (1) scans the environment over a radius up to 270° using invisible laser beams. As soon as a monitoring field is violated, the coordinates for the area violated (2) are transmitted to a higher-level control and alarm management system.

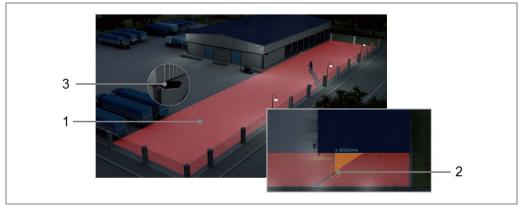


Fig. 15: Camera management and object tracking in open spaces

This processes the data and guides the camera (3) immediately to the place where the event occurred. Cameras are fitted with a tilting/turning mechanism enabling them to be guided to any coordinates as required.

	Intruders can be detected early using targeted, pin-sharp object images	
•	Event-controlled camera guidance and object tracking	
•	Automatic tracking of the moving object	
•	Detection of several objects or persons simultaneously	
•	Simplifies surveillance task for security guards	
•	Efficient recording including by moving cameras	
•	Easy integration into existing camera systems	
•	Retrofitting and networking of multiple sensors possible	
•	Privacy can be taken into account by using laser sensors only	

3.4 Outer shell protection (facades)

Laser scanners are usually used vertically for the monitoring of facades. Thanks to the freely definable shape and size of the monitoring fields, just a few systems are required, making safety and security both effective and inexpensive. In night mode (2), unlike day mode (1), the whole of the facade can be monitored.

Fig. 16: Outer shell protection (facades)

The building's floor outline or fence serves as the **reference contour**. This can be constantly inspected by the system to see it remains intact (distance measurement). Deviations in this contour, e.g., due to movements of earth (excavation) in the monitoring area or manipulation of the laser scanner (dismantling) trigger an alarm.

Overview of tasks and benefits of laser scanners

- Large monitoring area
- As many surrounding contours as desired can be stored as references
- Prevents undetected excavation
- · No impairments from surrounding lighting
- Blanking of fixed-position obstacles (e.g., wall constructions)

3.5 Roof protection

With flat roof protection, SICK laser scanners are generally installed directly on the building. This removes the need for expensive installations or attachments on the roof.

The monitoring field for the system is set up approx. 30 cm above the ground so that any persons crawling beneath the alarm zone are detected and registered (1). The edge of the monitoring area can also be placed slightly above the edge of the roof so that ladders, for instance, are detected at once. Roof structures casting shadows are taken into account in the planning of the monitoring fields (2).

Fig. 17: Roof protection

The arrangement of the monitored areas, the choice of object size to be detected, and flexibly adjustable response times mean any movement of animals, birds, or leaves through the monitored field will not trigger an alarm (filter function).

Overview of tasks and benefits of laser scanners				
High level of protection against intrusion				
Seamless monitoring of light domes and bands of light				

- Early alarm in the case of intrusion attempts
- Monitoring of large areas using just a few sensors
- Simple, low cost retrofitting
- Low installation and wiring costs
- Prevention of destruction to property with associated low follow-up costs

3.6 Ceiling monitoring and wall penetration protection

Indoor protection has the advantage that ambient conditions are stable for the most part. Laser scanners are used for large areas. Often just one laser scanner will need to be installed to monitor several skylights simultaneously (1).

Fig. 18: Ceiling monitoring and wall penetration protection

Interior walls are protected from penetration (2) similarly to a facade using a laser scanner. This method is also useful for warehouse facilities with thin metal walls.

Overview of tasks and benefits of laser scanners

- Low-cost easy installation (sender and receiver in single housing)
- Offset areas possible
- Different field geometries (shapes) possible

3.7 Painting protection

Laser scanners provide precise and discreet protection of paintings and sculptures. Thanks to flexible day and night modes, individual areas can be secured throughout the day (1), while the entire wall, including the entrance, can be monitored at night (2).

Fig. 19: Painting protection

If a painting is touched without permission, an alarm will be triggered.

Overview of tasks and benefits of laser scanners

- Certified systems
- Simple, almost invisible installation
- Actuators (e.g., a signal system) can be connected directly to outputs

4 Detection ranges

The detection range of laser monitoring depends on several factors.

Remission

The remission is the measure of reflective energy. This energy depends on the surface of the objects to be detected. The better a surface reflects the beam (i.e., the brighter the object), the greater the scanning range of the laser scanners.

In the security field, the detection range assumes a remission of at least 10%.

Object size

The size of the object also affects the scanning range. The smaller the object, the harder it is to detect. If the beam only partially hits the object, less energy is reflected.

VdS certification guidelines differentiate between monitoring of persons or objects entering the detection zone, reaching into the detection zone, and using tools to penetrate the detection zone.

Monitoring for	Object size
People/objects passing through zone	≥ (300 mm x 300 mm)
People/objects reaching into zone	≥ (40 mm x 40 mm)

Environmental influences

In outdoor monitoring, fog, rain, or snow may physically affect the detection range. The extent to which the scanning range might be affected in this case can only be quantified in a specific verification test on site.

Scanning range of the laser scanner

SICK laser detectors cover various detection ranges indoors and outdoors. Depending on the monitoring situation on site, it may be necessary to check the current conditions and determine which laser scanner has the required scanning range. An overview of this is provided in the device overview in the following chapter.

Extra laser scanner recommended

Data on the scanning range should always be viewed as a point of reference rather than a guarantee. If the specified scanning range for the laser scanner is not correct due to ambient conditions, the number of laser scanners should be increased in order to be sure that an area or facade is protected.

See the project planning examples at the end of this manual.

5 Devices and accessories

5.1 Selecting the right detector

The 2D laser scanners can be used for a wide range of monitoring scenarios. SICK has the right laser scanner for any monitoring situation, both indoor and outdoor.

The right device can be selected using the following flowchart.

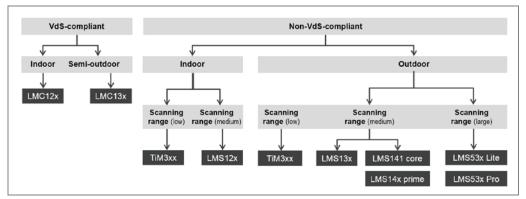


Fig. 20: Flowchart for device selection

Monitoring in accordance with VdS guidelines

LMC1xx laser scanners are used to monitor VdS object protection systems. These devices are designed for use in intrusion detection systems as per EN 50131-1. Under the VdS guideline, these devices are suitable for monitoring for intrusions caused by someone or something passing through the detection zone up to a maximum distance of 18 meters (penetration of an area of at least 300 mm in diameter) and for monitoring for intrusions caused by someone reaching into the detection zone up to a maximum distance of 9 meters (penetration of an area of at least 40 mm in diameter).

The VdS mounting kit, which is available as an accessory, must be used in order for the laser scanner setup to be VdS-compliant (see Chapter **5.3.2 Mounting kits**). Due to the two mounting kits used for the LMC1xx, there are two temperature ranges. The relevant VdS guidelines for planning and installation, for example, must likewise be taken into consideration.

Devices	Notes	Application
LMC12x	VdS-certified laser scanner (without heating) Mounting kit VdS1 short Ambient temperature: 0 °C to +45 °C Mounting kit VdS2 long Ambient temperature: 0 °C to +50 °C Colors: pebble gray, deep black, signal white	Indoor
LMC13x	VdS-certified laser scanner (with heating) Ambient temperature: -30 °C to +50 °C Fog filter is set at the factory, but not the particle filter. Colors: pebble gray, deep black, signal white * Semi-outdoor refers to the analysis time and with it the multiple options for analysis, which is restricted by VdS class C to 25 ms and by VdS class B to 40 ms.	Semi-outdoor*

Tab. 1: VdS-compliant devices

Project planning manual	Devices and accessories	Chapter 5
Building safety and security		
	The LMC1xx laser scanners are the only devices on the market with (German safety certificate). VdS certification guarantees that the sys recognized by insurance companies. The devices have a firmware veraccepted and documented by the VdS.	stem is reliable and is
VdS guidelines	Both laser scanners are subject to the following VdS guidelines:	
	• 2117 requirement (photoelectric sensors = LS) according to test	method VdS 2485
	• 2312 requirement (motion detectors = BM) according to test met	hod VdS 2326
	Testing was carried out:	
	For LMC12x under photoelectric sensors class C environmental class	lass II (indoor)
	For LMC13x under photoelectric sensors class C environmental class	lass IVa (outdoor)
	• The LMC12x version has VdS certificate number G110045.	

- The LMC13x version has VdS certificate number G111032.
- The corresponding VSÖ number is GZ01150000211101-10.

	Devices	Notes
	LMS12x	Ambient temperature: 0 °C to +50 °C Scanning range for passing through zone: < 18 m Scanning range for reaching into zone: < 9 m Colors: pebble gray, deep black, signal white
SICK S	TiM320	Ambient temperature: -10 °C to +50 °C Scanning range for passing through zone: 2 m Scanning range for reaching into zone: < 1.5 m Color: light blue
	TiM351 TiM361	The TiM351 and TiM361 laser scanners are designed for outdoor use, but can also be used for indoor monitoring.* * In general, if the scanning range of the indoor devices is not sufficient for the monitoring scenario, outdoor devices can also be used for indoor monitoring. See the following chapter, Outdoor monitoring.

Indoor monitoring

Tab. 2: Devices for indoor monitoring

Outdoor monitoring

Scanning range The scanning range is the main criterion for device selection, especially outdoors. The device type and number of devices must be chosen depending on the size of the sectors to be monitored.

 Devices	Notes
TiM351	Ambient operating temperature: -25 °C to +50 °C Switch-on ambient temperature: -10 °C to +50 °C Scanning range for passing through zone: 6 m Scanning range for reaching into zone: 2 m Color: pebble gray
TiM361	Ambient operating temperature: -25 °C to +50 °C Switch-on ambient temperature: -10 °C to +50 °C Scanning range for passing through zone: 8 m Scanning range for reaching into zone: 6 m Color: pebble gray
LMS13x	Laser scanner (with heating) Ambient temperature: -30 °C to +50 °C Fog and particle filter are set at the factory Scanning range for passing through zone: < 18 m Scanning range for reaching into zone: < 9 m Colors: pebble gray, deep black, signal white
LMS141 core / LMS14x prime	Laser scanner (with heating) Ambient temperature: -40 °C to +60 °C Fog and particle filter are set at the factory Scanning range for passing through zone: < 30 m Scanning range for reaching into zone: < 12 m Colors (LMS141 core): pebble gray only Colors (LMS141 prime): pebble gray, deep black, signal white
LMS531 Lite/ LMS531 PRO	Laser scanner (with heating) Ambient temperature: -30 °C to +50 °C Fog and particle filter are set at the factory Scanning range for passing through zone: < 40 m Scanning range for reaching into zone: < 12 m Color: pebble gray
	 * Differences regarding technical equipment: Scanning frequency: (PRO = higher scanning frequency) Number of echoes (Lite = 2, PRO = 5) Switching inputs (Lite = 3, PRO = 4) Switching outputs (Lite = 2 volt-free semiconductor outputs in relay function, 1 digital output, PRO = 4 volt-free semiconductor outputs in relay function) Interfaces (PRO = additional CAN and RS422) Raw data output (PRO = yes)

Tab. 3: Devices for outdoor monitoring

5.2 Device overview

5.2.1 VdS-compliant devices

General

Part no.	Model name	Indoor	Semi- outdoor	Color	т	emperature ra	inge	I	P	VDS
					0 45 °C	0 50 °C	-30 50 °C	65	67	Class C
1051287	LMC121-11000	x		RAL 7032 – pebble gray	x			x		х
1051314	LMC121-11001	x		RAL 7032 – pebble gray		х		x		х
1051300	LMC122-11000	x		RAL 9005 – deep black	x			x		х
1051315	LMC122-11001	x		RAL 9005 – deep black		х		x		х
1051301	LMC123-11000	x		RAL 9003 – signal white	x			x		х
1051316	LMC123-11001	x		RAL 9003 – signal white		x		x		x
1051487	LMC131-11101		x	RAL 7032 – pebble gray			x		x	х
1051488	LMC132-11101		x	RAL 9005 – deep black			x		x	х
1051489	LMC133-11101		x	RAL 9003 – signal white			x		x	х

Electrical

Model name	Inputs	Outputs	Voltage range
	4 semiconductor inputs, e.g., for	2 volt-free semiconductor outputs	9 V DC 30 V DC
	Sharp/not sharp	in relay function	
	Walk-through test	• Alarm	
	Day/night	• Fault	
	Easy Teach	1 additional tamper output (tamper contact of optics cover)	
LMC121-11000	x	X	x
LMC121-11001	x	X	x
LMC122-11000	X	X	x
LMC122-11001	x	X	x
LMC123-11000	X	X	x
LMC123-11001	x	x	X
LMC131-11101	x	x	X
LMC132-11101	x	X	x
LMC133-11101	X	X	X

Interfaces

Model name	RS232	RS422	RS485	Ethernet	OPC	USB	CAN
LMC121-11000	X			X	х		X
LMC121-11001	X			X	х		X
LMC122-11000	X			X	Х		X
LMC122-11001	X			X	Х		X
LMC123-11000	Х			X	Х		X
LMC123-11001	X			X	x		X
LMC131-11101	x			x	x		x
LMC132-11101	X			X	Х		X
LMC133-11101	X			X	х		X

Technical data

Model name	Scanning	range	Scannir	ng range	N	/lax. dete	ction spee	ed
	Passing through zone (300 mm)	Reaching into zone (40 mm)	270°	190°	67 ms	20 ms	14 ms	10 ms
LMC121-11000	< 18 m	< 9 m	х					
LMC121-11001	< 18 m	< 9 m	х			X		
LMC122-11000	< 18 m	< 9 m	x			x		
LMC122-11001	< 18 m	< 9 m	x			x		
LMC123-11000	< 18 m	< 9 m	x			X		
LMC123-11001	< 18 m	< 9 m	x			х		
LMC131-11101	< 18 m	< 9 m	x			x		
LMC132-11101	< 18 m	< 9 m	x			x		
LMC133-11101	< 18 m	< 9 m	х			X		

5.2.2 Indoor devices (without VdS certification)

General

Part no.	Model name	Color	Temperatu	ire range	IP	
			0 50 °C	−10 50 °C	65	67
1063467	TiM320-1031000	RAL 5012 – light blue		Х	х	
1051384	LMS121-10000	RAL 7032 – pebble gray	X		Х	
1044322	LMS122-10000	RAL 9005 – deep black	X		Х	
1044321	LMS123-10000	RAL 9003 – signal white	X		Х	

Electrical

Model name	Inputs	Outputs		Voltage rai	nge
	 4 semiconductor inputs, e.g., for Sharp/not sharp Walk-through test Day/night Easy Teach 	 2 volt-free semiconductor outputs in relay function Alarm Fault 1 additional tamper output (tamper contact of optics cover) 	4 semiconduc- tor outputs	9 V DC 30 V DC	9 V DC 28 V DC
TiM320-1031000			x		x
LMS121-10000	x	X		X	
LMS122-10000	x	X		X	
LMS123-10000	X	X		x	

Interfaces

Model name	RS232	RS422	RS485	Ethernet	OPC	USB	CAN
TiM320-1031000						x	
LMS121-10000	x			x	x		x
LMS122-10000	X			X	X		X
LMS123-10000	X			X	X		X

Technical data

Model name	Scanning	range	Scannin	g range	Max. de			
	Passing through zone (300 mm)	Reaching into zone (40 mm)	270°	190°	67 ms	20 ms	14 ms	10 ms
TiM320-1031000	2 m	1.5 m	х		Х			
LMS121-10000	< 18 m	< 9 m	X			Х		
LMS122-10000	< 18 m	< 9 m	X			Х		
LMS123-10000	< 18 m	< 9 m	x			х	x	

5.2.3 Outdoor devices

General

Part no.	Model name	Color		Temperature range		IP
			−25 50 °C	−30 50 °C	−40 60 °C	67
1067299	TIM351-2134001	RAL 7032 – pebble gray	Х			x
1071399	TIM361-2134101	RAL 7032 – pebble gray	Х			x
1051379	LMS131-10100	RAL 7032 – pebble gray		X		x
1051402	LMS132-10100	RAL 9005 – deep black		X		x
1051485	LMS132-11100	RAL 9005 – deep black		X		x
1051403	LMS133-10100	RAL 9003 – signal white		x		x
1070209	LMS141-05100 core	RAL 7032 – pebble gray			x	x
1070409	LMS141-15100 prime	RAL 7032 – pebble gray			Х	x
1070410	LMS142-15100 prime	RAL 9005 – deep black			Х	x
1070411	LMS143-15100 prime	RAL 9003 – signal white			x	x
1055376	LMS531-11100 Lite	RAL 7032 – pebble gray		X		x
1067356	LMS531-10100 PR0	RAL 7032 – pebble gray		X		x

Electrical

Model name	Inpu		Outpu	ts	Voltage range			
	4 semiconductor	3 semiconductor	Volt-free	4	10.8	19.2	9	
	inputs, e.g., for	inputs, e.g., for	semiconductor outputs in relay	semiconduc- tor outputs	30 V DC	28.8 V DC	28 V DC	
	Sharp/not sharp	Sharp/not sharp	function					
	Walk-through test	Walk-through						
	Day/night	test						
	Easy Teach	Easy Teach						
TIM351-2134001	Only one input can be used for Easy Teach			x			X	
TIM361-2134101	Only one input can be used for Easy Teach			x			x	
LMS131-10100	x		2 + 1 additional tamper contact of the optics cover		x			
LMS132-10100	x		2 + 1 additional tamper contact of the optics cover		x			
LMS133-10100	X		2 + 1 additional tamper contact of the optics cover		X			
LMS141-05100 core		X	2 + 1 additional tamper contact of the optics cover		x			
LMS141-15100 prime	x		2 + 1 additional tamper contact of the optics cover		x			
LMS142-15100 prime	x		2 + 1 additional tamper contact of the optics cover		x			
LMS143-15100 prime	x		2 + 1 additional tamper contact of the optics cover		X			
LMS531-11100 Lite		x	2 + 1 additional semiconductor output			x		
LMS531-10100 PR0	X		4		1	x		

Interfaces

Model name	RS232	RS422	RS485	Ethernet	OPC	USB	CAN*
TIM351-2134001				X	х	X	
TIM361-2134101				X	х	x	
LMS131-10100	x			X	х		x
LMS132-10100	Х			X	х		X
LMS133-10100	Х			x	х		X
LMS141-05100 core	х			x (1 Hz)	x		
LMS141-15100 prime	х			X	х		X
LMS142-15100 prime	х			X	х		X
LMS143-15100 prime	х			X	х		Х
LMS531-11100 Lite				x (1 Hz)	х	x	
LMS531-10100 PR0	х	X	х	X	х	X	x

* With the help of the CAN digital I/O module, it is also possible to expand the number of outputs by up to 8 outputs via the CAN interface (see also Chapter **5.3.7 CAN modules**).

Technical data

Model name	Scannir	ng range	Scannir	ng range		Max. deteo	ction speed	i i
	Passing through zone (300 mm)	Reaching into zone (40 mm)	270°	190°	67 ms	20 ms	14 ms	10 ms
TIM351-2134001	6 m	2 m	x		Х			
TIM361-2134101	8 m	6 m	X		X			
LMS131-10100	Recommended 15 m (18 m max.)	< 9 m	x			x		
LMS132-10100	Recommended 15 m (18 m max.)	< 9 m	X			x		
LMS133-10100	Recommended 15 m (18 m max.)	< 9 m	X			x		
LMS141-05100 core	Recommended 25 m (30 m max.)	< 12 m	x			x		
LMS141-15100 prime	Recommended 25 m (30 m max.)	< 12 m	X			x		
LMS142-15100 prime	Recommended 25 m (30 m max.)	< 12 m	x			x		
LMS143-15100 prime	Recommended 25 m (30 m max.)	< 12 m	x			x		
LMS531-11100 Lite	Recommended 35 m (40 m max.)	< 12 m		x			x	
LMS531-10100 PRO	Recommended 35 m (40 m max.)	< 12 m		X				x

5.3 Accessories

For optimal integration and operation of the scanners in the monitoring system, the use of SICK and SICK approved accessories is essential."

This not only includes connection and mounting systems, but also weather hoods, scan finders, and lens cloths.

5.3.1 Weather hoods

To protect laser scanners mounted outdoors from dazzle, hail and direct sunlight, the use of a weather hood is recommended.

Accessories	Description	Part number
Weatherproof housing	Included in the mounting kit for the TiM351/TiM361 (see under 5.3.2 Mounting kits)	2068398

Weather hood for TiM351/TiM361

Weather hoods for LMS13x/LMS14x

· · · · · · · · · · · · · · · · · · ·				
	Accessories	Description	Part number	
	Weather hood, 190°	Sun and rain protection for outdoor applications Color: pebble gray	2046459	
	Weather hood, 270°	Sun and rain protection for outdoor applications Color: pebble gray	2046458	
	Weather hood, 190°, compact	Compact weather hood, 190°, for LMS1xx Color: deep black* * Other colors on request	2082563	
	Weather hood, 270°, compact	Compact weather hood, 190°, for LMS1xx Color: deep black* * Other colors on request	2082560	

Weather hood for LMS531 Lite/PRO

Accessories	Description	Part number
Protection hood	Recommended for protection from direct sunlight (heat) and environmental influences Color: RAL 7032 gray	2056850
Weather hood	Recommended for protection from direct sunlight (heat) and environmental influences Color: RAL 7032 gray	2063050

5.3.2 Mounting kits

VdS-compliant mounting kits

The LMC12x/LMC13x laser scanners with the VdS mounting kits meet the special VdS compliance requirements. A VdS-compliant mounting kit is included in the scope of delivery.

According to VdS guideline 2312, the fixing screws must not be freely accessible. The VdS-compliant mounting kits meet this requirement; mechanical tampering is therefore excluded.

The mounting kit consists of two parts: the lower part (for wall and ceiling mounting) and a flexible upper part (placed over the device).

Fig. 21: VdS-compliant mounting kits VdS1 long/VdS1 short

The **VdS1 long** mounting kit (1) completely encloses the LMC12x. The temperature range during VdS-compliant operation runs from 0 $^{\circ}$ C to +45 $^{\circ}$ C.

The **VdS1 short** mounting kit (2) only partially covers the upper part of the LMC12x/13x. The temperature range during VdS-compliant operation runs from 0 °C to +50 °C for the LMC12x and from -30 °C to +50 °C for the LMC13x. The LMC13x is therefore suitable for outdoor applications protected from the weather.

Mounting kits for TiM320

	Accessories	Description	Part number
T.	Mounting kit 2	Mounting kit, impact protection, and alignment aid	2061776

Mounting kits for TiM351/TiM361

Accessories	Description	Part number
Mounting kit	Mounting kit with sunshade/weather protection	2068398

Mounting kits for LMS12x

The following mounting kits cannot be used with a weather hood.

Accessories	Description	Part number
Mounting kit 1A Indoor	Mounting bracket for rear mounting on the wall	2034324
Mounting kit 1B Indoor	Mounting bracket for rear mounting on the wall with optics cover protection	2034325
Mounting kit 2 Indoor	Cross-wise adjustment possible only in combination with mounting kit 1a or 1b	2039302
Mounting kit 3 Indoor	Longitudinal adjustment possible only in combination with mounting kit 2	2039303

Mounting kits for LMS13x/LMS14x

	Accessories	Description	Part number
10 0 00 00 00 00 00 00 00 00 00 00 00 00	Mounting kit for weather hood	For 190°/270° weather hoods	2046025
	Quick release	Mounting kit 2046025 required Makes mounting and removal possible without readjustment	2046989
	Corner mounting bracket	Basis for both mounting kits 2046025 and 2046989	2082910

Mounting kits for LMS531 Lite/PR0

	Accessories	Description	Part number
x + + + + +	Mounting kit 1	Mounting kit 1 for mounting	2015623
****	Mounting kit 2	Mounting kit 2 for mounting Mounting kit 1 required	2015624
	Mounting kit 3	Mounting kit 3 for mounting Mounting kits 1 and 2 required	2015625

T	Mounting bracket	For retrofitting existing LMS2x1 mounting	2059271
	Mounting kit	Mounting kit for wall mounting (adjustment bracket)	2018303
	Mounting bracket	Mounting bracket, heavy-duty version, with protection cover, for floor mounting, height adjustment possible	7087514

5.3.3 Fine-adjustment unit

The fine-adjustment unit makes it possible to precisely align the LMS1xx and LMS5xx scanners. It can be combined with the following mounting kits:

	Accessories	Description	n	Part number
		Can be con mounting k	nbined with the following its:	
		LMS5xx		
		M	Mounting bracket (2059271)	
			Mounting kit (2018303)	
		LMS1xx		
Fine-a	Fine-adjustment unit	00) 22	Mounting kit for weather hood (2046025)	2076764
		1:1	Quick release (2046989)	
		L	Mounting kit 1A (2034324)	
		R	Mounting kit 1B (2034325)	
			Mounting kit 2 (2039302)	

5.3.4 Post and wall brackets

Brackets with corresponding adapter plates for holding the respective devices are available for mounting the LMS13x, LMS14x core/prime, and LMS531 Lite/PRO outdoor devices on poles and walls. The post and wall brackets for the LMS531 Lite/PRO laser scanners also hold the relevant connection box.

The devices can be mounted with or without sun protection on the post and wall brackets.

Accessories	Description	Part number
Post/wall bracket for LMS1xx	Post/wall bracket with adapter plate for mounting the LMS13x and LMS14x core/prime laser scanners	1081413
Connection box mounting bracket	Mounting bracket for mounting the connection box on the post/wall bracket for LMS1xx	2081636
Post/wall bracket for LMS531 Lite/PRO	Post/wall bracket with adapter plate for mounting the LMS531 Lite/PRO laser scanners	1081412

Accessories for post mounting

	Accessories	Description	Part number
\bigcirc	Adjustable strap for post bracket	Adjustable strap for post/wall bracket (2018304)	5306222
1 miles	Adjustable strap lock	Adjustable strap lock for tightening, 2 pieces required	5306221

5.3.5 Connecting cables

Both LMC12x and LMS12x indoor devices are wired via the terminal strip of the laser scanner. The LMC13x semi-outdoor device and LMS13x, LMS141 core, LMS14x prime, LMS531 Lite, and LMS531 PRO outdoor devices are connected directly via pre-assembled cables with an M12 plug connector and open end (see Chapter **5.3.5 Connecting cables**).

If large distances between the laser scanner and control are bridged, suitable connection boxes are available for the TiM3xx, LMS13x, LMS141 core, LMS14x prime, LMS531 Lite, and LMS 531 PRO outdoor devices (see Chapter **5.3.6 Connection boxes**).

Ethernet

Devices	Accessories	Description	Part number
	Connecting cable Ethernet to all LMS1xx/LMS5xx as well as to TiM351/TiM361	Connecting cable with M12 male connector, 4-pin/RJ45 - 05 m - 10 m - 20 m	6034415 6030928 6036158

USB

Devices	Accessories	Description	Part number
	USB cable for configuration of all LMS5xx	Connecting cable with USB-A/Mini USB male connectors - 3 m	6042517
	USB cable for configuration of all TiMxxx	Connecting cable with male connector, USB-A, male connector, Micro-B for configuration	6036106

TiM320 extension cable

Devices	Accessories	Description	Part number
	Extension cable	Female connector, D-Sub-HD, 15-pin, 2 m	2043413

TiM351/361 connecting cable

Devices	Accessories	Description	Part number
	Power and data connecting cable	Connecting cable with M12 female connector (12-pin), open cable end, shielded - 05 m - 10 m - 20 m	6042735 6042736 6042737

Devices	Accessories	Description	Part number
	Power connecting cable	Voltage supply with M12 coupling (5-pin) and open cable end (electronics and heating) - 05 m - 10 m - 20 m	6036159 6042565 6042564
	Output connecting cable	Connecting cable with M12 male connector (8-pin), open cable end, shielded - 05 m - 10 m - 20 m	6036155 6036156 6036157
	Inputs/data connecting cable	Connecting cable with M12 female connector (8-pin), open cable end, shielded - 05 m - 10 m - 20 m	6036153 6028420 6036154

Connecting cables for LMC13x/LMS141 core/LMS14x prime/LMS13x/LMS531 Lite

Connecting cables for LMS531 PRO

Devices	Accessories	Description	Part number
	Power connecting cable	Voltage supply with M12 coupling (5-pin) and open cable end (electronics and heating) - 05 m - 10 m - 20 m	6036159 6042565 6042564
	Output connecting cable	Connecting cable with M12 male connector (12-pin), open cable end, shielded - 05 m - 10 m - 20 m	6042732 6042733 6042734
	Data connecting cable	Connecting cable with M12 female connector (12-pin), open cable end, shielded - 05 m - 10 m - 20 m	6042735 6042736 6042737

5.3.6 Connection boxes

A connection box can be used to bridge large distances between the laser scanner and the monitoring system.

Connection boxes are available for the TiM351/TiM361, LMS13x, LMS141 core, LMS14x prime, LMS531 Lite, and LMS531 PRO devices. (See Chapter **6.4.3 Using a connection box**).

Note The connection box for the TiM351/361 can be used together with the CAN expansion modules (see below) in order to make further outputs available as volt-free relay contacts.

Connection box for TiM351/TiM361

Devices	Accessories	Description	Part number
- 10 M MO	Connection box relay	Connection box for power, I/O, tamper contact, and 4 relays * The stub cables for the connection box must be laid by the customer.	2082916

Connection box for LMS13x/LMS141 core/LMS14x prime/LMS531 Lite

Devices	Accessories	Description	Part number
	Connection box	Connection box for power and I/O (not Ethernet), with three pre-wired M12 cables (length of cable approx. 40 cm) * The stub cables for the connection box must be laid by the customer.	2062346

Connection box for LMS531 PRO

Devices	Accessories	Description	Part number
	Connection box	Connection box for power and I/O (not Ethernet), with three pre-wired M12 cables (length of cable approx. 40 cm) and tamper contact on housing cover	2063034
		* The stub cables for the connection box must be laid by the customer.	

5.3.7 CAN modules

Eight switching outputs can be added to the existing digital outputs if the compatible laser scanners using an I/O module. Together with the connection box for the TiM351/361 (see above), the outputs can be provided as volt-free relay contacts.

Expansion modules for LMS13x/LMS141 core/LMS14x prime/LMS531 Lite

Devices	Accessories	Description	Part number
1223日 1223日 1233日 123300 12330 12330 12330 12330 12330 1230000000000	CAN digital I/O module (Indoor)	External CAN expansion module for up to 8 additional switching outputs (IP 20)	6038825
000	CAN digital I/O module (Outdoor)	External CAN expansion module for up to 8 additional switching outputs (IP 66) Can be triggered by CAN bus in the central controls	6041328
	PG connector kit	Cable gland kit for CAN module (6041328)	6043917

5.3.8 Power supply unit

If the laser scanners cannot be connected to the existing voltage supply, appropriate power supply units are available.

Devices	Accessories	Description	Part number
	Power supply unit, 24 V DC / 2.5 A	For voltage supply to TiM3xx and LMS1xx Only suitable for indoor applications, because it is not strong enough to provide power for heating	6022427
	Power supply unit, 24 V DC / 3.9 A	For voltage supply to TiM3xx and LMS1xx for electronics and heating	7028790
	Power supply unit, 24 V DC / 4 A	For voltage supply to TiM3xx and LMS1xx for electronics and heating	6010362

Power supply unit for all TiM3xx/LMS1xx laser scanners

Devices	Accessories	Description	Part number
	Switching power supply unit, 24 V / 10 A	For voltage supply to LMS5xx for electronics and heating Relay for DC OK	6032863
No.	Switching power supply unit, 24 V / 10 A	For voltage supply to LMS5xx for electronics and heating	6020875
	Switching power supply unit, 24 V / 20 A	For voltage supply to LMS5xx for electronics and heating	6033968
	Power supply unit, 24 V DC / 40 A	DC OK relay contact, shutdown input	6052600

Power supply unit for all LMS531 Lite/PRO laser scanners

5.3.9 Scan finder

The scan finder helps locate the laser beam during installation.

Devices	Accessories	Description	Part number
	LS80b scan finder	Infrared receiver for locating the laser beam	6020756

6 Project planning

6.1 Analysis of the threat situation

The basis of project planning is to carry out a project-specific security analysis and use that to create a security concept that is tailored to the threat situation in question. Good analysis and customized planning based on the needs of the users, planners, and installation and security personnel ensure that the various systems are optimized within closed security concepts.

The threat situation and any according measures to be taken are determined by the following factors:

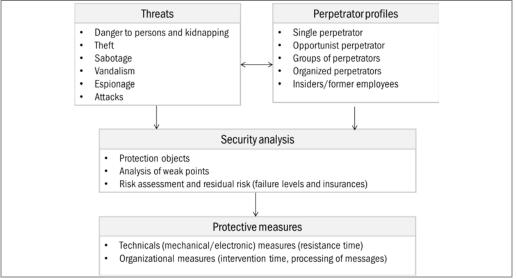


Fig. 22: Analysis of the threat situation

The sharpness of the laser scanner should be set based on the threat situation, so that only relevant alarms are triggered. The objective should be:

As few false alarms as possible and no faulty alarms!

Alarm type	Meaning
Faulty alarm	Alarm not triggered.
	The system does not report a threat even though one exists.
False alarm	Alarm triggered without cause.
	Alarm is triggered even though no threat exists.
	The cause of the trigger is either undetermined or is not
	considered a threat.

Tab. 4: Alarm types: faulty alarm, false alarm

The rate of undesired messages (RuM), caused by technical faults or animals, plants, weather, etc., should be kept as low as possible. Suitable alarm verifications should be used to minimize undesired messages and optimize detection (by connecting to another detection system, perhaps, such as to CCTV).

The configuration of the detection accuracy using the SOPAS configuration software is described in detail in Chapter **6.5 Detection accuracy and analysis strategy**.

6.2 Preliminary considerations during installation

It is important to ensure in advance that the monitored area can be "seen" as easily as possible by the laser scanners. The sensor should be mounted so that it is protected from tampering.

Facade protection	What to look for	What to do
·	Grass, bushes, or trees that are growing in the monitored area	 Use automatic field adjustment (available for LMS13x, LMS14x prime, and LMS531 PRO) Increase the distance between the bottom field edges and the ground
	Water surfaces (after rain) that cover the area's contour as reference and may produce reflections	 Use the field analysis instead of the contour as reference Increase the minimum object size if necessary
	Ventilation outlets, steam outlets in the monitored area	 "Cut out" (blank) the ventilation outlets Use a fog filter
	Antennas in the monitored area	"Cut out" (blank) the antennas
	Snowdrifts or snow accumulation in winter	 Use automatic field adjustment (available for LMS13x, LMS14x prime, and LMS531 PRO) Increase the distance between the bottom field edges and the ground
	Highly reflective (wet) windowsills/blinds	Increase the minimum object size
	Falling leaves or accumulation of leaves in autumn	 Increase the minimum object size Use automatic field adjustment (available for LMS13x, LMS14x prime, and LMS531 PRO) Increase the distance between the bottom field edges and the ground

 Tab. 5: Preliminary considerations (facade protection)

Fence	protection	

What to look for	What to do
Grass, bushes, or trees that are growing in the monitored area	 Use automatic field adjustment (available for LMS13x, LMS14x prime, and LMS531 PRO)
	Increase the distance between the bottom field edges and the ground
Snowdrifts, snow accumulation	 Use automatic field adjustment (available for LMS13x, LMS14x prime, and LMS531 PRO)
accumulation	Increase the distance between the bottom field edges and the ground
If mounted on a post:	Reduce the analysis field
unsteady or swaying post	Use suitable posts

Tab. 6: Preliminary considerations (fence protection)

Open space protection

What to look for	What to do
Grass, bushes, or trees that are growing in the monitored area	"Cut out" (blank) bushes and trees
Snow piles	Should be avoided
Snowdrifts, snow accumulation, e.g., at the field edges (such as on paths)	Increase the distance between the field edges and any walls or similar
Foliage, leaf piles, or accumulation of leaves	 Increase the minimum object size Increase the analysis time Increase the distance between the field edges and any walls or similar
Ventilation outlets	 "Cut out" (blank) the ventilation outlets Use a fog filter Use the contour as reference and analyze the "last echo"
Molehills	 Adjust the mounted height of the sensor (warning: risk of allowing people to crawl beneath the detection zone)
Animals (cats, rabbits, etc.)	 Increase the minimum object size (warning: risk of blanking people's legs)
Sprinkler systems for watering and irrigation	Use the contour as reference

 Tab. 7: Preliminary considerations (open space protection)

Roof protection

What to look for	What to do	
	Use a fog filter	
Ground fog as it drops	Use the contour as reference	
	Plan in more "functional reserves"	
Ventiletion outlets (Use a fog filter	
Ventilation outlets/ stacks	Use the contour as reference	
Stacks	"Cut out" (blank) the monitoring field accordingly	
Antennas	"Cut out" (blank) the monitoring field accordingly	
Snowdrifts	"Cut out" (blank) the monitoring field accordingly	
Large birds on the roof	Increase the minimum object size	
Large birds on the root	Implement suitable measures to keep birds away	
Pofloative roof addag	Increase the minimum object size	
Reflective roof edges	Cover the edges with appropriate materials	

Tab. 8: Preliminary considerations (roof protection)

Important general considerations

- Check the capability of the power supply unit if using long lengths of cables or large cable cross-sections. Take the voltage drop that occurs when the heating is switched on into account here, too.
- If using the contour as reference analysis strategy, ensure that the contour target does not blow in the wind. Use analysis fields with sufficient distance to the ground.

No reflective surfaces behind the reference target

All TiM3xx and LMS1xx devices have an external reference target to perform a self-check of the laser performance. The reference target must return a defined reflection value when it is scanned by the laser beam.

When mounting the laser scanner, make sure there are no reflective surfaces behind the reference target which could distort the returned reflection value.

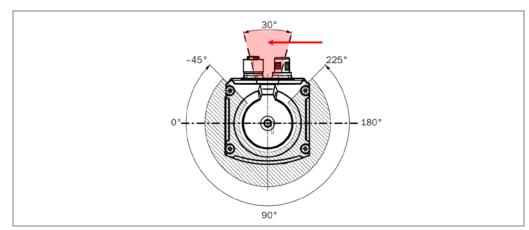


Fig. 23: Area behind the reference target in which no reflective surfaces are allowed

6.3 Heating

For outdoor applications or applications subject to strong environmental changes, the optics cover of the laser scanner may ice over or thaw due to radical fluctuations in temperature. The negative affects of this on laser performance can lead to false alarms. The LMC13x, LMS13x, LMS14x and LMS531 Lite/PRO laser scanners for semi-outdoor and outdoor applications are fitted with a heating function for this reason.

A separate power source is required for heating.

The minimum operating temperature of -30 °C (outdoor temperature) is guaranteed for a wind speed of 0 m/s. Experience has shown that operation is possible at wind speeds up to 0.5 m/s. At higher wind speeds the heat is transferred from the scanner too quickly. The heating strategies vary for the different laser scanners:

LMC13x/LMS13x/LMS14x heating strategies

Heating begins when the internal temperature drops below 10 °C. It then continues for at least three hours. If the temperature continues to fluctuate around the 10 °C mark, the heating often runs for a shorter time.

- Important
 If the temperature is over 0 °C in the laser scanner during commissioning, the device activates.
 - If the temperature is below 0 °C in the laser scanner during commissioning, the device must first be heated before it activates.
 - If the temperature in the device drops below 0 °C during operation, the device continues to run, but sends a telegram indicating that the minimum operating temperature has been breached.

LMS531 Lite/PRO heating strategy

Heating begins when the internal temperature drops below 5 °C. It then continues for at least three hours. Heating also starts when the sensor has been started.

The heating is automatically switched off after these three hours if all internal temperature sensors register a temperature over 10 °C.

The heating is always switched off if the measured internal temperature exceeds 50 °C.

6.4 Mounting and connecting cables

Both VdS-certified LMC12x and LMC13x laser scanners must be mounted using the mounting kit included with delivery.

For mounting non-certified devices, the appropriate mounting kit can be ordered from the accessories list.

In general the following information should be considered when selecting the mounting location:

- > Only mount the laser scanners on fixed surfaces.
- Ensure that the entire field of view of the laser scanner is not restricted. Mount the laser scanners so that their detection is not affected or distorted by high grass or branches moving in the wind.
- > Mount the laser scanners where shocks and vibrations are minimized.
- Ensure that the laser scanner is not placed in direct sunlight or in the path of other heat sources, in order to prevent the sensor interior from becoming overheated.
- > Avoid installation where the laser would be directed at glass or stainless steel surfaces.
- NoteUse of a weather hood is recommended for outdoor installations (see Chapter 5.3.1
Weather hoods).

6.4.1 Voltage supply

The laser scanners are supplied with a DC voltage between 12 V and 30 V, depending on the device type. If multiple devices are connected to a power supply unit, the current consumption of all devices must be added together.

If multiple power supply units are used, the negative potentials must be connected to each other.

To prevent an excessive voltage drop on the cables, the individual devices should be wired radially with a distribution unit at the center.

If the laser scanners have heating, a separate power supply is required for this function.

The customer will require the following to commission and operate the laser scanners:

Devices	Supply voltage	Power consumption	
LMC12x/LMS12x	9 V DC 30 V DC*	10 W	
TiM320	9 V DC 28 V DC*	without output load 3 W	
TiM351/TiM361	9 V DC 28 V DC*	without output load 3.5 W	
LMC13x/LMS13x	10.8 V DC 30 V DC*	with maximum heating output 60 W	
LMS141 core			
LMS14x prime	10.8 V DC 30 V DC*	with maximum heating output 60 W	
LMS531 Lite	19.2 V DC 28.8 V DC*	Power consumption at 24 V: 25 W	
LMS531 PRO		Extra power consumption of heating	
		at 24 V: 55-65 W	
* generated as per IEC 60364-4-41 (VDE 0100 Part 410)			

Tab. 9: Power consumption of laser scanner (overview)

6.4.2 Connecting cables

In general, all connections must be wired with copper cables. The connecting cable crosssection depends on the length of the cable, the connected device type, and the signal type. Laser scanners with integrated heating must be supplied with voltage via a separate cable. All communication cables must be stranded and shielded.

Consider the following when determining the number of cores:

- Voltage supply to the devices
- Connection of the alarm signal (alarm output, etc.)
- External control cables (sharp/not sharp, walk-through test, day/night, teach-in)

It is a good idea to plan for additional reserve cores for possible extensions.

Note

- When using connecting cables with flexible wires to connect to the terminals, ensure that no wire end sleeves are used and that core ends are not soldered.
- The length of cable must be calculated with the voltage drop in mind.

LMC12x/LMS12x

The connecting cables for the LMC12x/LMS12x laser scanners are connected to the terminals of the laser scanner via cable glands. The shielding must be attached as described in the operating instructions. The I/O cable and data/input cable should have at least 8 cores. The Ethernet connection is established via the Ethernet cable with a plug connector.

Ethernet	- - I/O cable - Data/Input cable - Voltage
	- voltage

Fig. 24: LMC12x/LMS12x connecting cables

The following cross-sections apply for each signal type, depending on the length of cable:

Signal type	Length of cable for 12 V	Length of cable for 24 V	Cross-section		
Supply voltage	< 10 m	< 125 m	0.25 mm ²		
	< 20 m	< 250 m	0.50 mm ²		
	< 40 m	< 500 m	1.00 mm ²		
I/O signals	The appropriate input GN do not use the supply GN	Similar to supply voltage The appropriate input GND must be used for the input signals; do not use the supply GND. Otherwise ground loops may cause undesired switching processes			

Tab. 10: Length of cable and cable cross-section (LMC12x/LMS12x connection)

For more information on assigning individual connections, see Chapter **6.7 Pin** assignments.

Note Due to the PNG cable entry, the external diameter of the joint cable must not exceed 9 mm.

TiM320

The TiM320 has a pre-fitted cable with a 15-pin D-sub HD male connector. This cable is connected to a 15-pin extension cable (2 m) that is directed to the distribution unit of the monitoring system on its open end.

Fig. 25: TiM320 connecting cables

For detailed information on assigning individual connections, see Chapter **6.7 Pin** assignments.

TiM351/TiM361

The connecting cables of the TiM351/TiM361 laser scanners have an M12 plug connector for connecting to the laser scanner and an open end that is directed to the distribution unit of the monitoring system. They can be ordered as accessories in lengths up to 20 m.

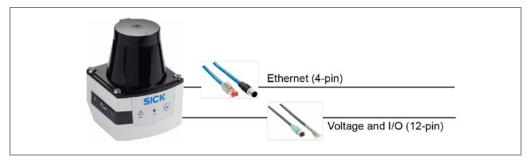


Fig. 26: TiM351/TiM361 connecting cables

For detailed information on assigning individual connections, see Chapter **6.7 Pin** assignments.

LMC13x/LMS13x/LMS141 core/LMS14x prime

The connecting cables of the LMC13x/LMS13x/LMS141 core/LMS14x prime laser scanners have an M12 plug connector for the connection of the laser scanner and an open end that is directed to the distribution unit of the monitoring system. They can be ordered as accessories in lengths up to 20 m.

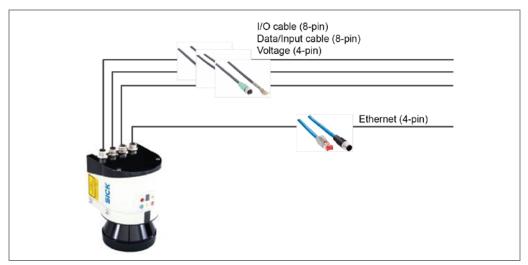


Fig. 27: LMC13x/LMS13x/LMS141 core/LMS14x prime connecting cables

LMS531 Lite/LMS531 PRO

The connecting cables of the LMS531 Lite/PRO laser scanner have an M12 plug connector for connecting to the laser scanner and an open end that is directed to the distribution unit of the monitoring system. They can be ordered as accessories in lengths up to 20 m.

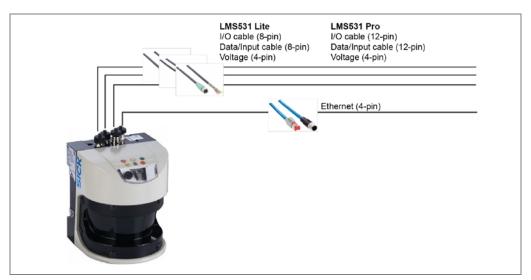


Fig. 28: LMS531 Lite/LMS531 PRO connecting cables

6.4.3 Using a connection box

If the length of the connecting cables is not sufficient, use a suitable connection box. **Separate installation cables** are routed from the central control to the connection box on-site to produce the connection.

Suitable connection boxes are available for the different device types.

For detailed information on assigning terminals, see **Pin assignment** in Chapter **6.7.7Connection** boxes.

Connection box for TiM3xx

The TiM3xx laser scanners use the connection box with the part number 2082916. In addition to its connectivity, the connection box also features volt-free semiconductor outputs in relay function. It therefore provides an electronic component which the laser scanners do not have themselves.

The connection between the connection box and the laser scanner depends on the device type.

TiM320 The TiM320 laser scanner is connected to the connection box via the adapter cable. The plug connector for the adapter cable is inserted into the cable harness of the laser scanner. The open end of the adapter cable is directed through the PG connector into the inside of the connection box housing and connected to the terminal strip accordingly.

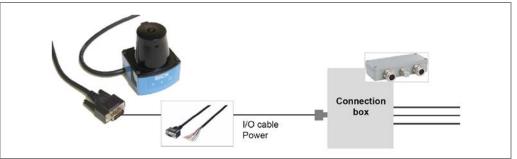


Fig. 29: Connection box for TiM320

TiM351/TiM361TiM351 and TiM361 laser scanners are connected via a pre-assembled connecting cable.
This cable has an M12 connector for connection to the laser scanner on one end.
The open end of the cable is directed through the PG connector into the inside of
the connection box housing and connected to the terminal strip accordingly.

The Ethernet cable is directly connected to the laser scanner.

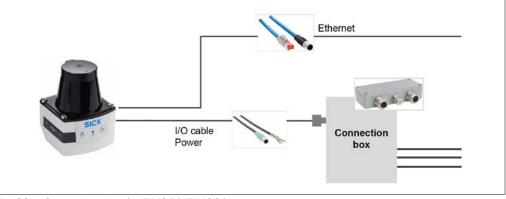


Fig. 30: Connection box for TiM351/TiM361

The following cable cross-sections apply for each signal type, depending on the length of installation cables:

Signal type	Length of cable for 12 V	Length of cable for 24 V	Cross-section	
Supply voltage	< 12 m	< 60 m	0.25 mm ²	
power consumption max. 15 W	< 25 m	< 125 m	0.50 mm^2	
(all outputs fully loaded)	< 50 m	< 250 m	1.00 mm ²	
Supply voltage	< 60 m	< 300 m	0.25 mm ²	
power consumption	< 125 m	< 600 m	0.50 mm ²	
typically 3 W	< 250 m	< 1,200 m	1.00 mm ²	
I/O signals	Similar to supply vo	oltage		
	The appropriate input GND must be used for the input signals; do not use the supply GND. Otherwise ground loops may cause undesired switching processes to occur.			

Tab. 11: Length of cable and cable cross-section (connection box for TiM351/TiM361)

LMS13x/LMS141 core/LMS14x Lite/LMS531 Lite connection box

The LMS13x/LMS141 core/LMS14x Lite/LMS531 Lite laser scanners use the connection box with the part number 2062346. The connection box and the laser scanner are connected via three pre-assembled cables with M12 plug connectors. The connection has fixed wiring in the connection box. The Ethernet cable is directly connected to the laser scanner.

The diameter of the stub cables must be between 5 and 12 mm.

Fig. 31: Connection box for LMS13x/LMS141 core/LMS14x prime/LMS531 Lite

Project planning

Building safety and security

The following cable cross-sections apply for each signal type, depending on the length of installation cable:

LMS1xx connection

Signal type	Length of cable for 12 V	Length of cable for 24 V	Cross-section		
Supply voltage	< 10 m	< 125 m	0.25 mm ²		
	< 20 m	< 250 m	0.50 mm ²		
	< 40 m	< 500 m	1.00 mm ²		
Heating (LMS13x)	-	< 15 m	0.25 mm ²		
	_	< 30 m	0.50 mm ²		
	_	< 60 m	1.00 mm ²		
Heating (LMS14x)	-	< 9 m	0.25 mm ²		
	_	< 17 m	0.50 mm ²		
	_	< 35 m	1.00 mm ²		
I/O signals	Similar to supply ve	oltage			
	do not use the supply	The appropriate input GND must be used for the input signals; do not use the supply GND. Otherwise ground loops may cause undesired switching processes to occur.			

Tab. 12: Length of cable and cable cross-section (connection box for LMS1xx)

LMS531 Lite connection

Signal type	Length of cable for 12 V	Length of cable for 24 V	Cross-section		
Supply voltage	-	< 29 m	0.25 mm ²		
	-	< 60 m	0.50 mm ²		
	-	< 120 m	1.00 mm ²		
Heating	-	< 12 m	0.25 mm ²		
	_	< 24 m	0.50 mm ²		
	-	< 48 m	1.00 mm ²		
I/O signals	Similar to supply ve	oltage			
	do not use the supply	The appropriate input GND must be used for the input signals; do not use the supply GND. Otherwise ground loops may cause undesired switching processes to occur.			

Tab. 13: Length of cable and cable cross-section (connection box for LMS531 Lite)

LMS531 PRO connection box

The LMS531 PRO laser scanners uses the connection box with the part number 2063034. The connection box and the laser scanner are connected in the same way as for the LMS531 Lite (see above).

The connection box has **tamper contacts** in the housing cover.

The diameter of the stub cables must be between 5 and 12 mm.

The following cable cross-sections apply for each signal type, depending on the length of installation cable:

Signal type	Length of cable for 12 V	Length of cable for 24 V	Cross-section	
Supply voltage	-	< 29 m	0.25 mm ²	
	-	< 60 m	0.50 mm ²	
	-	< 120 m	1.00 mm ²	
Heating	-	< 12 m	0.25 mm ²	
	_	< 24 m	0.50 mm ²	
	-	< 48 m	1.00 mm ²	
I/O signals	Similar to supply ve	oltage		
	do not use the supply	The appropriate input GND must be used for the input signals; do not use the supply GND. Otherwise ground loops may cause undesired switching processes to occur.		

Tab. 14: Length of cable and cable cross-section (connection box for LMS531 PRO)

6.5 Detection accuracy and analysis strategy

The SOPAS configuration software is used to define all settings for determining the accuracy and sharpness (resolution) of detection and to specify the analysis strategy.

- **Filters** generally affect the detection of objects in this case. They influence the measured distance values.
- **Analysis fields** divide the reading field monitored by the laser scanner into individual zones, which can then be analyzed separately.
- **Analysis cases** determine how a breached analysis field is analyzed. The analysis case defines the analysis strategy and also takes into account the set filters. The digital outputs to be switched are defined for each analysis case. Analysis cases can be activated and deactivated via the digital inputs.

The analysis case is therefore central to the monitoring process.

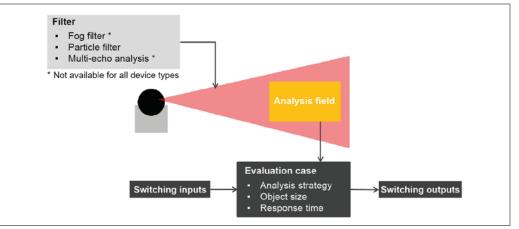


Fig. 32: Filter - analysis fields - analysis cases - switching inputs

6.5.1 Working with filters

The laser scanners have digital filters for pre-processing and optimizing the measured distance values.

Depending on the LMS type, a fog filter and particle filter can be configured. The multiecho analysis of the reflective pulses makes it possible to prevent faults from occurring in a way that is tailored to the monitoring situation.

Note The described filters are not active for VdS-compliant LMC12x and LMC13x devices. They cannot be activated for these devices.

Fog filter

The fog filter prevents possible dazzle caused by fog. The laser scanner is less sensitive at close range when the fog filter is used.

Note The fog filter is not available for TiM3xx laser scanners.

Particle filter

The particle filter can filter out faults caused by dust particles, raindrops, or snowflakes, and other similar particles in dusty environments, when it is raining or snowing, etc.

The particle filter causes the response to an object in the analysis field or to a breach of the contour to be delayed by the time it takes to complete one scan. This approach eliminates typical "noise" thanks to multiple measurements.

Raindrops are detected in both scans in the following example. Because the measuring points in the repeated measurement are not provided by the same beams, however, a random process is assumed that remains unconsidered.

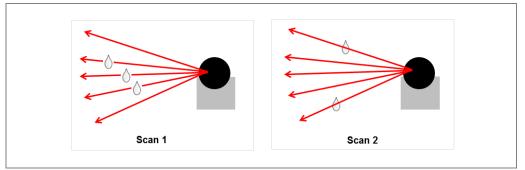


Fig. 33: Particle filter principle of operation

The set response time of the analysis strategies, **pixel analysis**, **blanking**, and **contour as reference**, remain unchanged by this (for response time, see Chapter **6.5.4 Setting the alarm sensitivity**).

Multi-echo analysis

Multi-echo technology makes it possible to detect object and weather-related breaches and multiple reflections. In this approach, both the rate of false and faulty alarms and the rate of undesired messages (RuM) are significantly reduced.

The laser scanner measures a potential second reflective pulse and sends this measured value in a measured value telegram. A second reflective pulse occurs, for example, when the laser beam next hits a raindrop. This reflects part of the energy (first reflective pulse). The other part of the beam continues and is then reflected by an actual object (second reflective pulse).

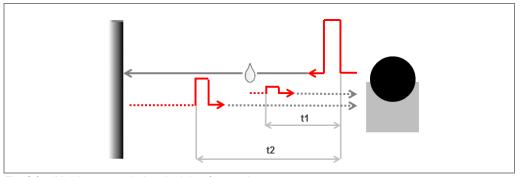


Fig. 34: Multi-echo analysis principle of operation

The described method is especially suitable for use with the contour as reference analysis strategy (see Chapter **6.5.5 Using contour as reference for** tamper-proofing).

Note

Multi-echo analysis is not available for TiMxxx laser scanners.

6.5.2 Defining analysis fields and cases

Analysis fields

The laser scanner uses the integrated field application to analyze up to ten analysis fields (1) within its scanning range (2). Using this method it is possible to divide up different monitored areas exactly and analyze these, making it significantly easier to monitor areas.

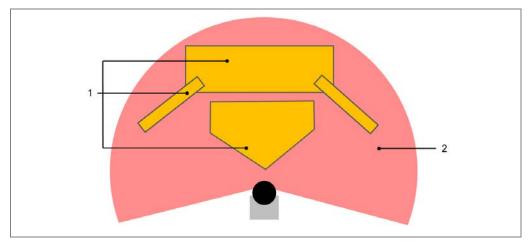


Fig. 35: Scanning range and analysis fields

Analysis fields are created in the SOPAS configuration software. Their size and shape can be defined in virtually any way and thus tailored to suit the individual monitoring situation.

Evaluation cases

Each analysis field is linked to an **evaluation case**. An evaluation case determines the way the analysis field is evaluated and which switching output is addressed. Up to ten evaluation cases can be created and assigned. Evaluation cases adapt the laser scanner to the specific analysis situation and determine its detection accuracy.

An evaluation case is configured via the following parameters:

- The **inputs**, which switch a case between active and inactive.
- The analysis strategy (pixel analysis, blanking).
- The alarm sensitivity (response time and object size).
- The **output** affected by the analysis case.

The following work flow results from these parameters:

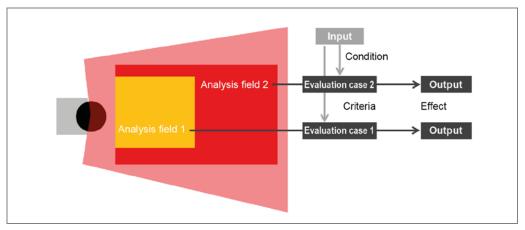


Fig. 36: Evaluation cases, principle of operation

- The laser scanner calculates whether there is an object in the analysis field or whether an analysis field is not being completely visible due to tampering, taking the filter settings into account.
- The evaluation case linked to the analysis field determines based on the defined parameters (object size, response time, etc.) whether the analysis field has been breached and how to respond. The evaluation case thus defines the sharpness (resolution) of the detection.
- The switching output is used to define which event must be signaled (alarm, fault, tampering, etc.).
- The evaluation case is set as active or inactive via a digital switching input if necessary.

6.5.3 Taking account of object sizes

The SOPAS control software can be used to define the minimum size an object must be in order to be detected. This setting differentiates between the two analysis strategies, **pixel analysis** and **blanking**.

Pixel analysis

The laser scanner analyzes the entire area of the monitoring field, during which **every single beam** is included in the analysis. An object is considered "detected" when a laser beam in the analysis field has been breached.

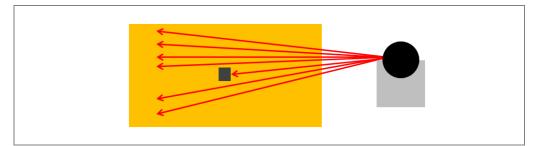


Fig. 37: Pixel analysis principle of operation

Blanking

In this method, the laser scanner also analyzes the entire area of the monitoring field. However, objects up to a specific size are not considered due to blanking.

In the following example, an object is only detected if three adjacent laser beams are breached in the analysis field. Objects that are smaller than the blanking are ignored.

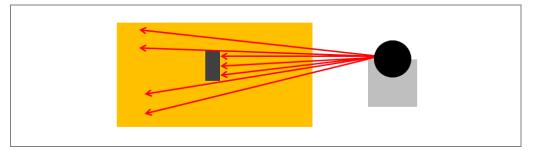


Fig. 38: Blanking principle of operation

6.5.4 Setting the alarm sensitivity

The response time is used to define how **long** an object must be detected in order for a breach to be identified. A longer response time makes multiple sampling possible, where the alarm sensitivity can be better tailored to the ambient conditions in question.

The response time is defined for both the **pixel analysis** and **blanking analysis** strategies. For the laser scanner to detect an object, the object must be detected for at least the duration of the response time.

The response time depends on the scanning frequency. The higher the frequency of the laser scanner, the more frequently an object must be detected within the set response time for the analysis strategy used.

Note VdS-compliant laser scanners are limited to a short response time. VdS class C detectors have a response time of 25 ms, and VdS class B detectors have a response time of 40 ms.

Example

The following example assumes a scanning frequency of 10 Hz and a response time of 1 s. Therefore, the criterion for a breach must be met 10 times per second.

With the **pixel analysis** strategy, a breach of the same measuring beam must occur 10 times one after the other in order for an object to be detected. Otherwise no breach is reported.

With the **blanking** analysis strategy, a breach of three adjacent measuring beams must occur 10 times in order for an object to be detected. It does not have to be the same measuring beam. The criterion for a breach only specifies that the three measuring beams must be adjacent to each other.

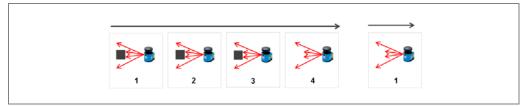


Fig. 39: Example for setting the alarm sensitivity

If the criterion is not met in a scan, the process starts again from scratch.

Note Because in the **blanking** analysis strategy it does not have to be the same adjacent measuring beams, this strategy is better suited to the security field than pixel analysis.

6.5.5 Using contour as reference for tamper-proofing

In the analysis strategy using **fields** as described above, the analysis field must not touch the ground during vertical scanning, because this would result in a permanent breach of the detection zone. An alarm should only be triggered if an object has penetrated the field and thus generated a measurement point in the analysis field.

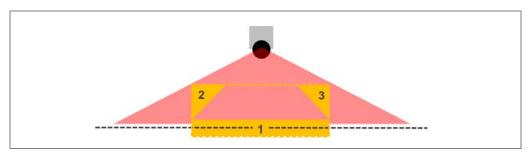


Fig. 40: Analysis strategy using fields

The approach used in the **contour as reference** analysis strategy is the opposite. The field is positioned so that the contour of an object (the ground in this case) is constantly located in the detection zone. The scanned contour of the ground is used as a reference by the monitoring system. It must remain in the detection zone at all times, otherwise an alarm will be triggered.

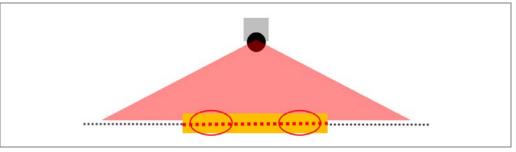


Fig. 41: Contour as reference analysis strategy

The analysis case linked to the field is created so that an alarm is only triggered when the reference contour is no longer fully detected.

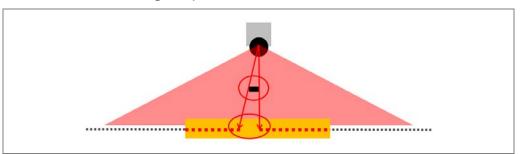


Fig. 42: Contour as reference principle of operation

Fields which analyze the reference contour are only possible if the **blanking** analysis strategy is also used at the same time. This strategy can be used to set the size of the shadowing.

The **contour as reference** configuration provides good protection against tampering in many ways.

- The **multi-echo analysis** is especially suitable for this purpose. Because the system knows which measurement points need to be seen, the measurement points generated by snow or rain can be blanked in a targeted way.
- The **remission** of these points is insignificant for detection, because only the shadowing from the known measurement points is counted.
- Finally, the contour as reference strategy provides effective **protection against tampering**, such as repositioning the laser scanner. Because the provided measurement points deviate from the taught-in measurement points of the reference contour, an alarm is triggered.

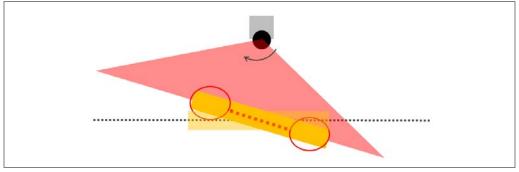
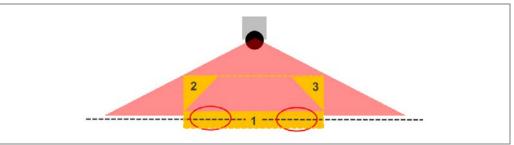



Fig. 43: Protection against tampering thanks to contour as reference

The **contour as reference** monitoring scenario can be supplemented by analysis fields. In the following example, scanned analysis fields 2 and 3 prevent someone or something from jumping over the reference contour from the side undetected. The monitored area takes on the shape of a rectangle again.

Fig. 44: Combination of analysis strategies: fields and contour as reference **Tamper-proofing against shadowing and dazzle**

Shadowing (1) and dazzle (2) can lead to parts of the analysis field being "invisible" to the laser scanner and thus no longer monitored (3).

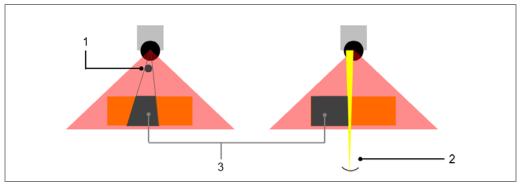


Fig. 45: Tamper-proofing against shadowing and dazzle

6.5.6

Because the laser scanner identifies which area of the field it cannot see in which time, the risk posed by shadowing and dazzle can be eliminated by the software. It can prevent shadowing of a field from going unnoticed.

In this case an **advanced response time** is defined in addition to the response time of the analysis case. This advanced response time defines how long an area of the analysis field can be "invisible" to the laser scanner.

If the advanced response time is exceeded, an alarm is triggered similarly to a "normal" field breach.

Usually the advanced response time should be set to be the same as the "normal" response time.

Note The advanced response time is not available for the contour as reference strategy.

6.5.7 Automatic field adjustment

When open spaces or fences are protected, there is a risk that changing ambient conditions will trigger an alarm in the monitoring fields. Tall grass in the summer or snowdrifts or piles of leaves in the winter are some examples of how monitoring fields which have been configured for a specific environmental situation can quickly trigger false alarms when conditions change and no longer suit the configuration.

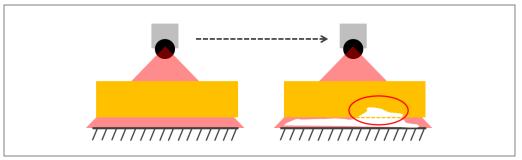


Fig. 46: Field breaches caused by changing ambient conditions

Automatic field adjustment can be used to adapt the monitoring fields dynamically to suit changing conditions. In the example of falling snow, then, the field slowly adapts to the accumulating snow. It moves slowly up as the snow levels increase.

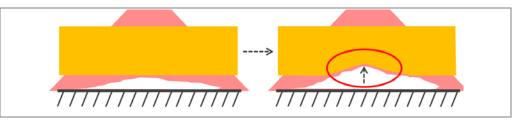


Fig. 47: Automatic field adjustment principle of operation

Because the automatic field adjustment should only react to environmental changes slowly, the speed of the change is specified in cm per minute when the analysis field is configured. If the change occurs more quickly, the field will not adapt quickly enough and an alarm will be triggered.

This prevents the analysis field from being manipulated or tampered with, for example by raising a board in order to trick the field into adjusting by moving up. Crawling through the monitored area is ruled out.

The automatic field adjustment can be assigned to a digital switching output (e.g., Error 1) and reported to the monitoring system. If reported, a camera is switched on and directed at the place where the event is occurring.

Note Automatic field adjustment is only available for LMS13x, LMS14x, and LMS531 PRO laser scanners.

6.5.8 Teaching in/updating fields automatically (Easy Teach)

The **Teach** digital input can be used to activate the Easy Teach function. This function allows information to be taught-in to the laser scanner without a PC. The monitoring field is automatically generated during the teach-in process. Already existing monitoring fields can be quickly adapted to new locations.

The monitoring system is notified via error output **Error 1** that the laser scanner is not switched to sharp resolution during the teach-in process. The display is activated, and the 7-segment display can be viewed.

The teach-in process ends when the digital switching input **Teach** is switched back to inactive.

Lite and PRO variants

The Easy Teach function is available as a Lite and PRO version. Easy Teach Lite can only be used to automatically teach-in **one monitored area**. Easy Teach PRO can be used to adapt up to five **already existing monitored areas** by initiating a new scan process in the current environmental situation.

Easy Teach is available in the device variants as follows:

Device	Easy Teach Lite	Easy Teach PRO
LMS12x	Х	Х
LMS13x	X	Х
LMS141 core	X	
LMS14x prime	X	Х
LMS531 Lite	X	
LMS531 PRO	Х	Х

Tab. 15: Variants for switching input Teach In

Easy Teach cannot be used with VdS-compliant LMC12x and LMC13x devices and TiM3xx laser scanners.

Setting up a field for permanent monitoring (Easy Teach Lite)

The **Easy Teach Lite** variant can be used to teach-in the maximum scanning range of the laser scanner via digital switching input **Teach**. Just put the laser into operation and switch on the input signal. Working with the SOPAS configuration software is not necessary.

In the standard configuration, the laser scanner moves from its start and stop angles (from -5° to 185° or from -5° to 270° , depending on the device type). The field is taken at a distance of 250 mm to the recognized contour. The scanning range (1) and monitoring field (2) are congruent.

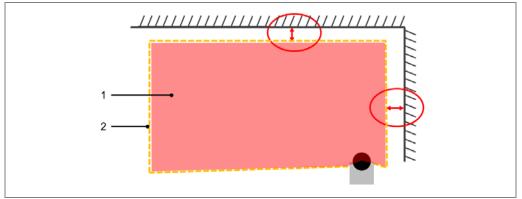


Fig. 48: Easy Teach Lite principle of operation

The monitoring field is scanned, taking into account the objects found in the scanning range. All objects found in the scanning range are blanked from the field.

Fig. 49: Easy Teach: blanking objects from the field

Persons may also enter the desired monitoring field can also be entered by during the teach-in process.

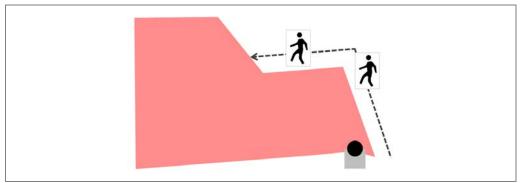


Fig. 50: Easy Teach: entering the monitoring field

Since the laser scanner always measures the shortest distance during the teach-in phase, it must be ensured that no one inadvertently enters the intended detection zone.

Further optimizing a field (Easy Teach Lite)

The SOPAS configuration software can be used to make further adjustments to automatically generated reading fields so that they are tailored to individual requirements. The start and stop angle or the minimum distance to the recognized contour can be changed.

Easy Teach can also be converted into **contour as reference**. In this case the field is set up so that the scanned contour(s) is/are located inside it.

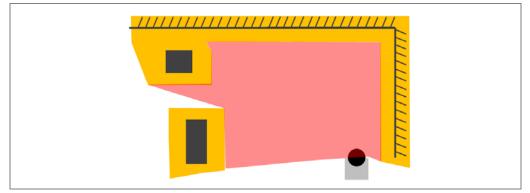
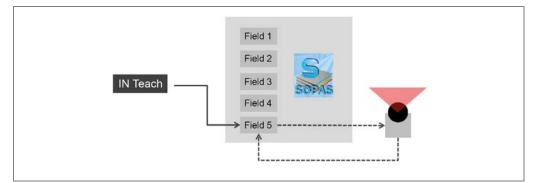



Fig. 51: Easy Teach Lite: further optimizing a field

Updating existing monitoring fields (Easy Teach PRO)

Easy Teach PRO can be used to update fields that have already been set up in SOPAS, using digital switching input **Teach**.

The figure below shows two analysis fields defined in SOPAS.

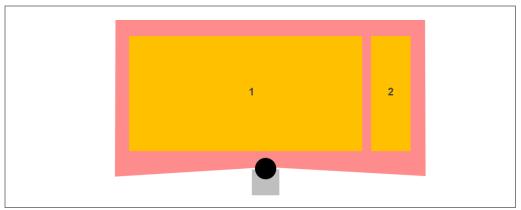


Fig. 53: Easy Teach PRO: monitoring fields before teach-in process

Analysis field 1 is updated via input **Teach**. This means that **field 1** defined in its limits is **taught-in again**, where all objects located in the scanning range are blanked from the field.

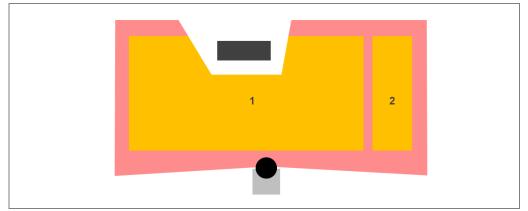


Fig. 54: Easy Teach PRO: monitoring fields after teach-in process

The main benefit of this method is that less configuration of the laser scanner is required for permanent monitoring; instead the individual response to specific environmental situations is emphasized before the monitoring resolution is set.

Example A parking lot is monitored during the night. Since the spaces are never always empty or always occupied, the cars currently parked in the lot are scanned and then blanked from the field before the monitoring resolution is set.

The objects in the analysis field therefore do not constitute a breach and will not trigger an alarm.

Teaching in existing fields with contour as reference (Easy Teach PRO)

The Easy Teach function can also be used to teach-in fields that have already been defined in SOPAS regardless of the specific monitoring situation as fields with tamper-proofing. These fields are taught-in as **contour as reference fields**. This means that the contours of all objects in the monitoring field at the time of the teach-in process are included in the scan.

The figure below shows a field defined in SOPAS for facade protection. The field was created using the **Teach-in tamper-proofing** function. A radial, triangular field emitting from the sensor is automatically generated, which extends into the current contour (in this case the contour of the ground).

Background: Because all fields taught-in via the Easy Teach function must be located within the existing master field, the master field must be larger or equal to the contour as reference field being taught-in. In the **Teach-in tamper-proofing** function, the extent to which the master field extends into the contour can be specified via **Distance to contour**.

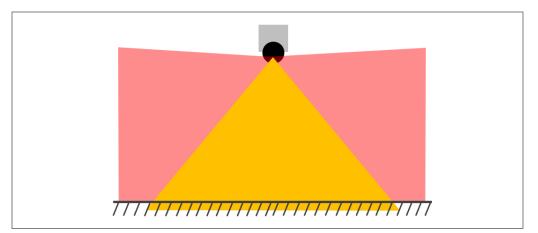


Fig. 55: Easy Teach PRO: master field for contour as reference field

Note When the master field is defined, there should be no objects in the scanning range of the laser scanner.

The master field is taught-in via the Easy Teach function using the **Contour as reference** option before the system resolution is set. The contours scanned here (ground and contour of the object) are used later as a reference for monitoring. The scanned contours must remain in the detection zone at all times, otherwise an alarm will be triggered.

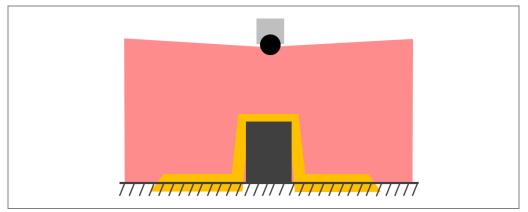
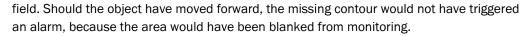



Fig. 56: Easy Teach PRO: contour as reference field after being taught-in with Easy Teach

Example The monitoring situation on a truck loading bridge is adapted via the **Teach** switching input to the current loading situation before the system resolution is set. The teach-in function for the monitoring field as contour as reference is used to ensure that an alarm is triggered is the truck drives forward.

If the situation had been adapted using **facade monitoring without contour as reference**, the Easy Teach function would have blanked the area with the object from the analysis

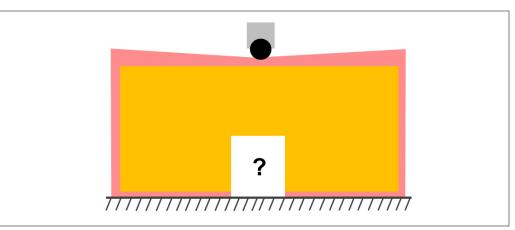


Fig. 57: Easy Teach PRO: problem of using facade monitoring without contour as reference field

6.5.9 Activating/deactivating analysis cases (day and night mode)

The **Day/Night** digital switching input can be used to set one or more analysis cases to active or inactive. Switching the analysis cases causes the linked monitoring fields to be analyzed or not analyzed, respectively.

There are two possible configurations for a monitoring field using the input. Day and night are just the names of the input modes. The monitoring field can be considered by the analysis case during the "Day" only, during the "Night" only, or in both cases (i.e., "always").

In the example, the two analysis cases, Window and Facade, are switched as follows:

- During the day, the **Window analysis case** is set to **LOW**, and the **Facade analysis case** to **HIGH**: Only the **Window field** is monitored. A breach of the **Facade field** is ignored by the **Facade analysis case**.
- At night the **Window analysis case** is set to **HIGH** and the **Facade analysis case** to **LOW**. The facade is monitored as a result. A breach of the **Window field** is now ignored by the **Window analysis case**.

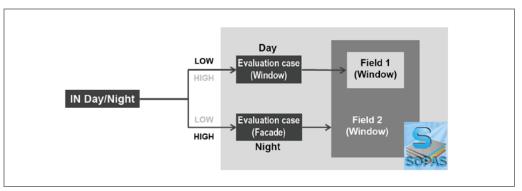


Fig. 58: Activating analysis cases (switching input Day/Night)

Note Day/Night mode is **not** available for TiM3xx, LMS141 core, and LMS531 Lite laser scanners.

6.6 Configuration of the signaling method

6.6.1 Overview of digital inputs

The laser scanner has up to four digital switching inputs, depending on the device. These inputs affect analysis cases (see Chapters **6.5.8 Teaching in/updating fields automatically (Easy Teach)** and **6.5.9 Activating/deactivating analysis cases (day and night mode)**) or the operating status of the laser scanner directly.

In the standard configuration, input assignments are preset for the cases: **Armed/Disarmed** (sharp/not sharp), **Functional test** (walk-through test), **Day/Night** (day/night mode), and **Teach-In** (Easy Teach function).

Note This pre-assignment can be adjusted in expert mode in the SOPAS configuration software (see Chapter **6.6.8 Working in expert mode**).

6.6.2 Switching laser scanners to sharp/not sharp

The **Armed/Disarmed** input can be used to switch the laser scanner to active for alarm management (does not apply to TiM3xx).

- The laser scanner is **switched to sharp** when there is **no current** present on the input. In this state, field breaches are registered as alarms via the switching output. The laser scanner display cannot be seen. The RS232 interface is permanently switched off.
- If the input is switched, the display can be seen. In this status, contamination
 messages can be viewed, for example. A field breach is not displayed. The
 corresponding LED does not illuminate.
- Alarm memory: If when the detector is set to "sharp" a monitored area has been breached, this is indicated by LED **Q2** flashing when the detector is switched to "not sharp". The memory is wiped when the detector is switched back to "sharp".

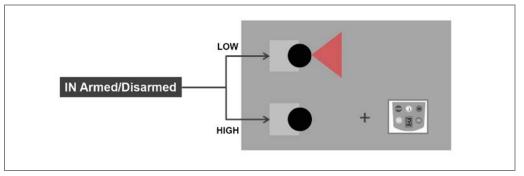


Fig. 59 Switching the laser scanner to sharp/not sharp (switching input Armed/Disarmed)

Note This ensures that even when set to "not sharp" no field breaches are detected and thus no conclusions about the monitored area are possible.

6.6.3 Switching the laser scanner to walk-through test mode

The **Functional test** input is used to switch the laser scanner to walk-through test mode. In this mode, the monitoring functions of the laser scanner are checked, by walking through the scanned reading field (does not apply to TiM3xx).

- Walk-through test mode is **switched off** when there is no current present on the input. In this state, field breaches are registered as alarms via the switching output. The laser scanner display cannot be seen. The RSE232 interface is permanently switched off.
- If the **input is switched**, the laser scanner goes into walk-through test mode. The display can be seen. Field breaches are indicated by the yellow LED but do not trigger an alarm on the monitoring system. This allows the correct switching behavior of the laser scanner to be checked by walking through the reading field.

it is quickly detected.

Faulty switching due to dirty optics covers or tampering with the laser scanner by turning

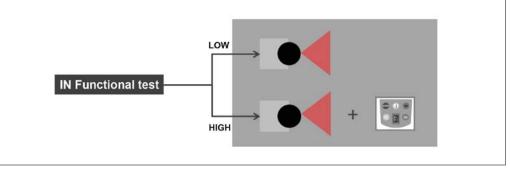


Fig. 60 Walk-through test mode (functional test switching input)

Note Note that in walk-through test mode field breaches are detected and indicated, and thus conclusions about the monitored area are possible.

6.6.4 Dry contact solid state outputs in relay function (overview)

The dry contact solid state outputs in the laser detector's relay function are configured as an alarm output and fault output. The analysis cases are all linked to the alarm output.

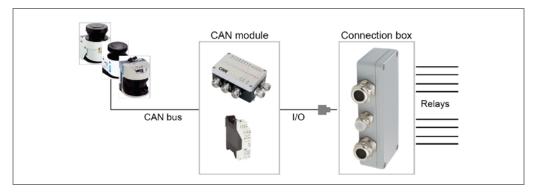
The outputs can be used as potential-free relay contacts (Alarm 1, Alarm 2) or as resistance-monitored outputs (Alarm R).

One advantage of dry contact solid state contacts is that they are independent of the internal power supply. The contacts can be switched without loss because the output voltage can be clearly defined by creating an external voltage. Switching through the applied voltage creates a clearly defined alarm status without internal voltage drops or power loss.

Note the following information about the dry contact solid state outputs in relay function:

LMC12x, LMS12x, LMC13x, LMS13x LMS141 core, LMS14x prime	Minimum	Typical	Maximum
Quantity			2
Switching voltage			40 V DC/AC
Continuous load current (25 °C)			0.5 A
Peak load (25 °C, 100 ms, one time)			3 A
Specific insulation resistance		0.34 Ω	0.7 Ω
Output capacity			220 pF
Dielectric strength of the inputs/outputs			1,500 V AC
Power-up delay		1.3 ms	0.1 ms
Power-down time		0.1 ms	0.5 ms
Switching frequency	5 Hz		
LMS531 Lite/LMS531 PR0			
Number of LMS531 Lite			2
Number of LMS531 PRO			4
Switching voltage			28 V AC 40 V DC
Continuous load current (25 °C)			1 A
Peak load (25 °C, 100 ms, one time)			3 A
Specific insulation resistance		0.34 Ω	0.7 Ω
Output capacity		450 pF	
Dielectric strength of the inputs/outputs			60 V
Power-up delay		1.5 ms	5 ms
Power-down time		0.1 ms	0.5 ms
Switching frequency	5 Hz		
Data output via Ethernet (LMS531 Lite)			1 Hz

Note A CAN module can be supplied to add to the digital switching outputs (see Chapter 5.3.7 CAN modules).


Dry contact relay output in the connection box for TiM3xx

In addition to its connectivity, the connection box with the part number 2082916 also features 4 volt-free semiconductor outputs in relay function. These outputs can be used accordingly by the TiM3xx laser scanners.

Note the following information about the volt-free semiconductor outputs on the connection box:

ТіМЗхх	Minimum	Typical	Maximum
Number (of semiconductor relays)			4
Cover contact			1
Semiconductor relay switching voltage			20 V AC
			30 V DC
Cover contact switching voltage			30 V
Semiconductor relay switching current			0.5 A
Cover contact switching current			0.5 A
Specific insulation resistance		0.34 Ω	0.7 Ω
Output capacity			220 pF
Dielectric strength of the inputs/outputs			1,500 V AC
Power-up delay		1.3 ms	0.1 ms
Power-down time		0.1 ms	0.5 ms
Switching frequency	5 Hz		

Laser scanners which feature dry contact relay outputs can expand the existing relay outputs using the CAN module and the connection box.

Further information on the CAN module can be found in Chapter **5.3.7 CAN** modules. The terminal assignment of the connection box is described in under **Pin assignment** in Chapter **6.7.7 Connection boxes**.

6.6.5 Circuitry without resistance monitoring

The dry contact relay outputs in the laser scanner's relay function are usually closed in normal operating mode. There is constant voltage between the intrusion alarm central controls and the laser scanner. The relay contact opens when an alarm is triggered. An alarm message is issued when the output voltage drops. The described behavior can be customized.

In the following figure, terminals **1** (**Alarm 1**) and **3** (**Alarm 2**) are defined as alarm outputs for the LMS12x/LMC12x laser scanners. The cores of the connecting cable should be placed according to the terminal strip of the laser scanner.

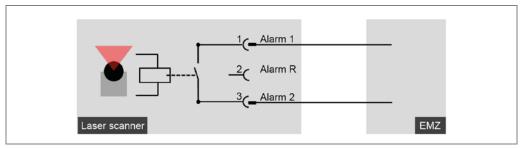


Fig. 61: Circuitry without resistance monitoring (LMC12x/LMS12x)

In semi-outdoor and outdoor devices, the alarm is triggered via the open ends of the white and brown cores of the I/O connecting cable. The open ends of the cable must be placed in the intrusion alarm central controls accordingly.

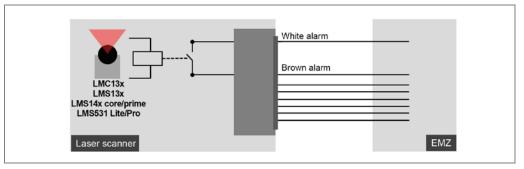


Fig. 62: Circuitry without resistance monitoring (LMC13x/LMS13x/LMS141 core/LMS14x prime/LMS531 Lite/LMS531 PRO)

6.6.6 Circuitry with resistance monitoring

The circuits also function with resistance monitoring for increased protection against tampering with the cable connections (against disconnection or bridging). The resistance is located between the outputs. If bridged, for example by an alarm sensor that had been previously tampered with or using a normal wire, the measured resistance value changes, which is detected by the central controls and identified as a sabotage alarm.

The resistance R must be adapted to the alarm central controls in question and to the number of sensors connected to an input.

The resistor must be directly inserted into the terminal strip on LMS12x/LMC12x indoor devices. Outputs 3 (Alarm 2) and 2 (Alarm R) are bridged by a resistor. The voltage on the resistance-monitored output 2 (Alarm R) is regulated at the defined resistance value.

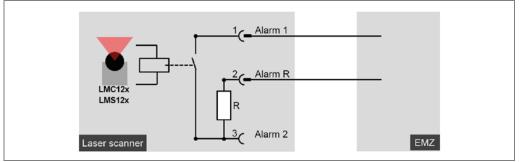


Fig. 63: Circuitry with resistance monitoring (LMC12x/LMS12x)

For the LMC13x, LMS13x, LMS531 Lite, and LMS531 PRO semi-outdoor and outdoor devices, the resistance must be monitored via the open ends of the connecting cable in the intrusion alarm central controls. The voltage on the alarm outputs **1** (**white** core) and **2** (**brown** core) is regulated in the intrusion alarm central controls by a resistor. The resistance-monitored connection layout of the alarm system is implemented using the resistance-monitored output **Alarm R**. The green and yellow cores of the connecting cable are internally linked in the LMS.

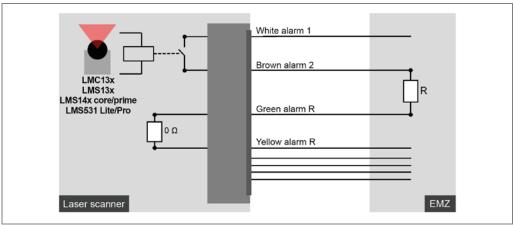


Fig. 64: Circuitry with resistance monitoring (LMC13x/LMS13x/LMS141 core/LMS14x prime/LMS531 Lite/LMS531 PRO)

Note The figures show the resistance monitoring for the alarm output. The other outputs can also be resistance-monitored in the same way.

6.6.7 Tamper-proofing

The LMS12x/LMC12x, LMC13x/LMS13x, LMS141 core, and LMS14x prime laser scanners are fitted with an internal lift contact for the optics cover to prevent tampering. This contact is located between the upper part of the housing and the basic housing and monitors the screw connection.

Fig. 65: LMS12x/LMC12x/LMC13x/LMS13x/LMS141 core/LMS14x prime tamper-proofing

If the screws of the upper part of the housing are loosened and the optics cover is lifted, a sabotage alarm is triggered. The sabotage output is switched without power and an alarm is triggered.

For more information on the sabotage outputs, see Chapter 6.7 Pin assignments.

The connection boxes for the TiM3xx and LMS531 PRO laser scanners also feature an internal lift contact to prevent tampering. The contact is located between the housing cover and the basic housing for the connection box.

6.6.8 Working in expert mode

The standard switching input assignments given here can be customized in the SOPAS expert mode. In contrast to the standard settings, the following can be configured:

- The input to which the analysis case responds and the switching output affected by the result.
- Whether the input assignment in question is permitted to have status LOW or HIGH or both.
- Whether combinations of input assignments affect an analysis case.

The monitoring scenarios can be adapted in expert mode to be more flexible to the specific threat situation. The conditions under which an analysis case takes effect, and the evaluation strategy used, can be defined by a combination of input assignments, for example.

While during standard operation, an analysis case can only be set to active or inactive, in expert mode an analysis case can be activated in significantly more detail.

Note Expert mode is **not** available for TiM3xx and LMS141 core laser scanners.

Example

The following example assumes that the same analysis field has been copied and linked with a different analysis case in each case.

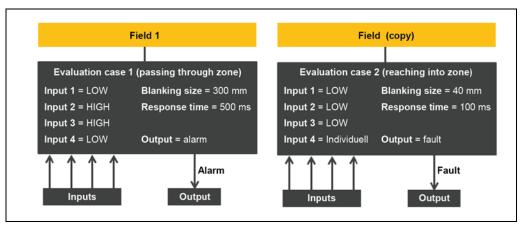


Fig. 66: Analysis cases in expert mode

Analysis case 1 protects the monitored area against **people/objects passing through the detection zone** due to a corresponding input assignment. A response time of 500 ms and a blanking size of 300 mm are defined. The output is connected to the alarm.

Analysis case 2 checks the monitoring scenario for **people reaching into the detection zone**. The response time is set to 100 ms and the blanking size is 40 mm. The output is connected to the fault.

6.6.9 Controlling cameras

CCTV is frequently used as a sensible addition to laser technology in fence, facade, or open space monitoring.

If the field is breached, the analysis case switches the corresponding digital output. The switching signal is used for the camera as the input, to trigger a pre-setting or direct a camera with a tilting/turning mechanism to the place where the event occurred. Up to 10 fields and outputs for camera control can be used depending on the laser scanner used.

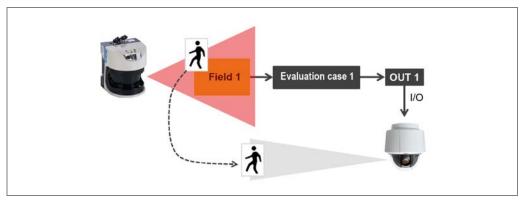


Fig. 67: Field-based switching of cameras (overview)

The cameras can be addressed in three ways:

- Directly via the corresponding I/O switching signal.
- Via a video management system.
- Via the SICK OPC server.

Direct field-based camera control

In the following figure, the digital output signal of the laser scanner directly switches on the camera input.

Fig. 68: Field-based camera control (direct)

Field-based camera control via video management system

In the following figure, the digital output signal of the laser scanner is converted to the TCP/IP protocol via an Ethernet I/O module and transmitted via Ethernet to the video management system for camera control.

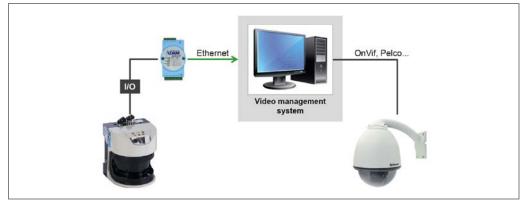


Fig. 69: Field-based camera control (via video management system)

Note I/O to Ethernet transducers are supported by all video management systems currently on the market.

Field-based camera control via OPC

In the following figure, the digital output signals are integrated into an existing OPC solution via the TCP/IP interface of the laser scanner. SICK provides its own OPC server for integration. The video management accesses the OPC objects as the OPC client.

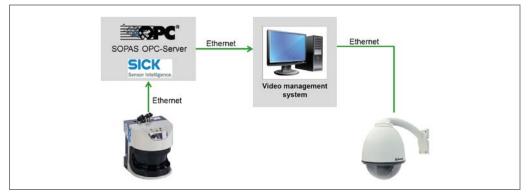


Fig. 70: Field-based camera control (via OPC)

The statuses of the monitoring field can easily be polled and used to program camera control.

For detailed information on OPC technology, see Chapter 7 Scalable solutions with OPC.

How to integrate a laser scanner into Milestone XProtect

The **LaserGuardian** plug-in makes it possible to integrate laser-based object monitoring directly into the Milestone XProtect video management system.

In this case, objects are tracked on an overview of the facility and the PTZ cameras are guided to follow the objects on the on the basis of measuring data which has been supplied by the laser scanners.

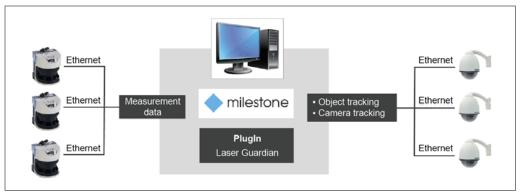


Fig. 71: How to integrate a laser scanner into Milestone XProtect

6.7 Pin assignments

6.7.1 LMC12x/LMC12x

The LMC12x/LMS12x laser scanners are fitted with a removable system plug, which has a cable entry on the back. The connections are located on the screw terminal in the system plug.

These variants also have an M12 round connector to connect to the Ethernet. The cable entry and the round connector can be remounted from the back to the bottom of the system plug.

	Terminal	Signal	Function
	1	Alarm 1	Relay contact 1 of alarm output
	2	Alarm R	Resistance monitor for relay contact
			of alarm output
	3	Alarm 2	Relay contact 2 of alarm output
	4	Sabotage 2	Digital sabotage output 2
	5	Sabotage 1	Digital sabotage output 1
	6	IN1 (S/U)	Digital input 1 sharp/not sharp
	7	IN1 GND (S/U GND)	Ground for digital input 1 sharp/not sharp
	8	IN2 (GT)	Digital input 2 walk-through test
	9	IN2 GND (S/U GND)	Ground for digital input 2 walk-through test
	10	IN4 Teach	Digital input 4 teach-in
14 28 28	11	IN3 (T/N)	Digital input 3 Day/ Night mode
	12	IN3/IN4 GND (Teach T/N GND)	Ground for digital inputs 3 and 4
	13	Error R	Resistance monitor for relay contact 1 of fault output
	14	Error 2	Relay contact 2 of the fault output
	15	GND	Ground LMS/LMC
	16	V _S	Supply voltage LMS/LMC
	17	No function	Do not use
	18	Sabotage R	Resistance monitor for digital sabotage output
	19	GND CAN	Ground CAN-BUS
	20	CAN_H	CAN-BUS High
	21	CAN_L	CAN-BUS Low
	22	CAN V _S 24 V	Supply voltage CAN
	23	GND CAN	Ground CAN-BUS
	24	CAN_H	CAN-BUS High
	25	CAN_L	CAN-BUS Low
	26	CAN V _s 24 V	Supply voltage CAN
	27	Error 1	Relay contact 1 of the
			fault output

Tab. 16: LMC12x/LMS12x pin assignment

6.7.2 TiM320

The TiM320 laser scanner has a 0.9 m long cable harness with 15-pin D-Sub-HD male connector. A 2 m long adapter cable with a 15-pin D-Sub-HD female connector and open end can be ordered as an accessory for an extension cable.

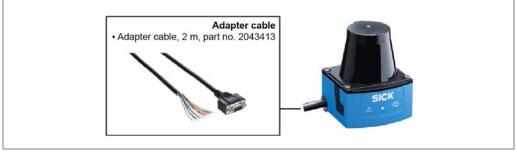
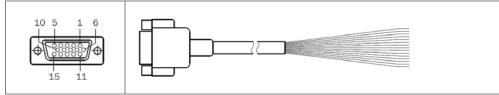


Fig. 72: TiM320 adapter cable (with part number)


Pin assignment for 15-pin D-Sub-HD male cable connector

	Pin	Wire color	Description
	1	Red	Supply voltage
	2	Violet	-
	3	Yellow	-
6 1 5 10	4	Red + black	Switching output 4 (index/error)
	5	Black	Ground
	6	Light blue	-
	7	Dark blue	-
11 15	8	Turquoise or	Switching input 1 (field set selection)
		light gray	
	9	Green	Switching input 2 (field set selection)
	10	Gray	Switching input 3 (field set selection)
	11	Pink	Switching input 4 (field set selection)
	12	Brown	Switching output 1 (field breach)
	13	Orange	Switching output 2 (field breach)
	14	White	Switching output 3 (field breach)
	15	White + black	Common ground for all inputs

Tab. 17: TiM320 pin assignment

The core colors of the 2 m long adapter cable are identical to the core colors of the cable harness.


Adapter cable (part number: 2043413)

Tab. 18: TiM320 adapter cable pin assignment

6.7.3 TiM351/TiM361

The TiM351 and TiM361 laser scanners have two multi-pin M12 round connectors. Pre-assembled cables can be ordered as accessories for connection to the M12 round connectors. The voltage supply cable consists of the round connector and a 5, 10, or 20 m long cable with an open end. The Ethernet cable has an RJ45 male connector on the other end.

Fig. 73: TiM351/TiM361 connecting cables (with part number)

Connecting cable for voltage, inputs, and outputs (part number: 6042735, 6042736,
6042737)

	Pin	Wire color	Description
	1	Brown	System ground
	2	Blue	Supply voltage (10 28 V DC)
	3	White	Switching input 1 (field set selection)
11 3 2 10	4	Green	Switching input 2 (field set selection)
	5	Pink	Switching output 1 (field breach)
5	6	Yellow	Switching output 2 (field breach)
9	7	Black	Switching output 3 (field breach)
6 8 12	8	Gray	Switching output 4 (field breach)
7 0	9	Red	Common ground for inputs
	10	Pink	Switching input 3 (field set selection)
	11	Gray/pink	Switching input 4 (field set selection)
	12	Red/blue	-

Tab. 19: TiM351/TiM361 pin assignment (voltage supply/inputs and outputs)

6.7.4 LMC13x/LMS13x, LMS141 core/LMS14x prime

The LMC13x/LMS13x/LMS141 core, and LMS14x prime laser scanners have four multipin M12 round connectors. The connections are located on the corresponding male or female connectors. Pre-assembled cables can be ordered as accessories for connection to the M12 round connectors. These cables consist of the round connector and a 5, 10, or 20 m long cable with an open end. The Ethernet cable has an RJ45 male connector on the other end.

Fig. 74: LMC13x/LMS13x/LMS141 core/LMS14x prime connecting cables (with part number)

Voltage supply (part number: 6036159, 6036160, 6042561)

	Pin	Wire color	Description
$2 \rightarrow -1$	1	Brown	24 V system
	2	White	24 V heating
3	3	Blue	System ground
	4	-	Not assigned
4	5	Black	Ground for heating

Tab. 20: LMC13x/LMS13x/LMS141 core/LMS14x prime pin assignment (voltage supply)

Alarm connecting cable (part number: 6036155, 6036156, 6036157)

	Pin	Wire color	Description
	1	White	Volt-free contact Alarm
8	2	Brown	
- 100-2	3	Green	Internal bridge (0 ohm) for setting up the
	4	Yellow	resistance-monitored output
6-1-2-3	5	Gray	Volt-free output Fault
5-4	6	Pink	
	7	Blue	Cover switch for monitoring the
	8	Red	optics cover for removal

Tab. 21: LMC13x/LMS13x/LMS141 core/LMS14x prime pin assignment (alarm)

Input connecting cable (part number: 6036153, 6028420, 6036154)

	Pin	Wire color	Description
	1	White	Sharp (0 V)/not sharp (+24 V)
	2	Brown	Operation (0 V)/walk-through test (+24 V)
\sim^{-2}	3	Green	CAN-BUS High
3-1-1	4	Yellow	CAN-BUS Low
4 - ((•••)) 8	5	Gray	CAN-BUS GND
7	6	Pink	Day (0 V)/Night (24 V)
56			LMC13x/LMS13x/LMS14x prime only
	7	Blue	Operation (0 V)/Easy Teach (+24 V)
	8	Red	Ground for all inputs

Tab. 22: LMC13x/LMS13x/LMS141 core/LMS14x prime pin assignment (inputs)

6.7.5 LMS531 Lite

The LMS531 Lite laser scanner has four multi-pin M12 round connectors. The connections are located on the corresponding male or female connectors. Pre-assembled cables can be ordered as accessories for connection to the M12 round connectors. These cables consist of the round connector and a 5, 10, or 20 m long cable with an open end. The Ethernet cable has an RJ45 male connector on the other end.

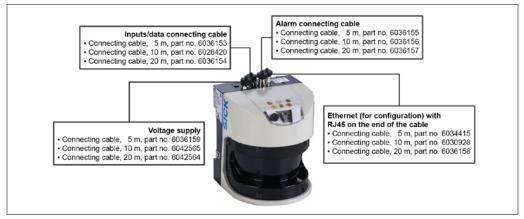


Fig. 75: LMS531 Lite connecting cables (with part number)

Voltage supply (part number: 6036159, 6036160, 6042564)

_	Pin	Wire color	Description
	1	Brown	24 V system
	2	White	24 V heating
	3	Blue	System ground
	4	-	Not assigned
-4	5	Black	Ground for heating

Tab. 23: LMS531 Lite pin assignment (voltage supply)

Alarm connecting cable (part number: 6036155, 6036156, 6036157)

	Pin	Wire color	Description
	1	White	Volt-free contact Alarm
8	2	Brown	Volt-free contact Alarm
- 100-2	3	Green	Internal bridge (0 ohm) for setting up the
7 - ((())))	4	Yellow	resistance-monitored output
6-12-3	5	Gray	Valt free output Foult
5-4	6	Pink	Volt-free output Fault
-	7	Blue	Volt-free output Sabotage (24 V)
	8	Red	Volt-free output Sabotage (GND)

Tab. 24: LMS531 Lite pin assignment (alarm)

Input connecting cable (part number: 6036153, 6028420, 6036154)

	Pin	Wire color	Description
	1	White	Sharp (0 V)/not sharp (+24 V)
2	2	Brown	Operation (0 V)/walk-through test (+24 V)
	3	Green	Not assigned
	4	Yellow	Not assigned
4	5	Gray	Not assigned
56	6	Pink	Not assigned
5	7	Blue	Operation (0 V)/Easy Teach (+24 V)
	8	Red	Ground for all inputs

Tab. 25: LMS531 Lite pin assignment (inputs)

6.7.6 LMS531 PRO

The LMS531 PRO laser scanner has four multi-pin M12 round connectors. The connections are located on the corresponding male or female connectors. Pre-assembled cables can be ordered as accessories for connection to the M12 round connectors. These cables consist of the round connector and a 5, 10, or 20 m long cable with an open end. The Ethernet cable has an RJ45 male connector on the other end.

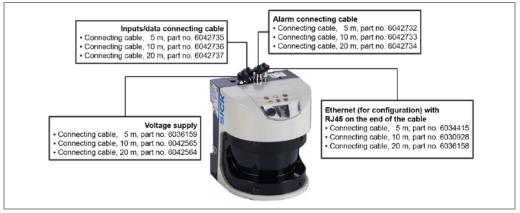


Fig. 76: LMS531 PRO connecting cables (with part number)

Voltage supply (part number: 6036159, 6036160, 6042564)

2	Pin	Wire color	Description
2~1	1	Brown	24 V system
	2	White	24 V heating
5	3	Blue	System ground
3-2-4	4	-	Not assigned
	5	Black	Ground for heating

Tab. 26: LMS531 PRO pin assignment (voltage supply)

Alarm connecting cable (part number: 6042732, 6042733, 6042734)

	Pin	Wire color	Description
	1	Brown	Out1_a - volt-free contact Alarm
	2	Blue	Out4_a - volt-free contact Sabotage
	3	White	Out1_b - volt-free contact Alarm
	4	Green	Out1R_a - volt-free contact for setting
			up a resistance-monitored alarm
$10 \frac{2}{10} \frac{3}{11}$	5	Pink	Out2_a - volt-free contact Fault
500/4	6	Yellow	Out1R_b - volt-free contact for setting
1(0,0,0)			up a resistance-monitored alarm
90005	7	Black	Out3_a - volt-free contact
12 0 6			Disqualification
8 7	8	Gray	Out2_b - volt-free contact Fault
	9	Red	Out4_b - volt-free contact Sabotage
	10	Violet	Out3_b - volt-free contact
			Disqualification
	11	Gray/pink	Out4R_a/Out4R_b - internal bridge (0 ohm)
	12	Red/blue	for setting up the resistance-monitored
			output Sabotage

Tab. 27: LMS531 PRO pin assignment (alarm)

	Pin	Wire color	Description
	1 Brov		IN1 - sharp (0 V)/not sharp (+24 V)
	2	Blue	RD-/RxD
2 2	3	White	Ground for all inputs
11 3 2 10	4	Green	Ground RS
	5	Pink	IN3 - Day (0 V)/Night (+24 V)
5	6	Yellow	IN2 - operation (0 V)/walk-through test (+24 V)
9	7	Black	TD-/TxD
6 8 12	8	Gray	Operation (0 V)/Easy Teach (+24 V)
7 0	9	Red	RD+
	10	Violet	TD+
	11	Gray/pink	CAN_L
	12	Red/blue	CAN_H

Connecting cable for inputs/data (part number: 6042735, 6042736, 6042737)

Tab. 28: LMS531 PRO pin assignment (inputs/data)

6.7.7 Connection boxes

The connection box for controlling the monitoring system is wired via corresponding terminals inside the housing. The terminal assignments are indicated on the pinout included with the box.

The connections for the voltage supply, the digital inputs and outputs and for the data/input cable are assigned using the enclosed pinout.

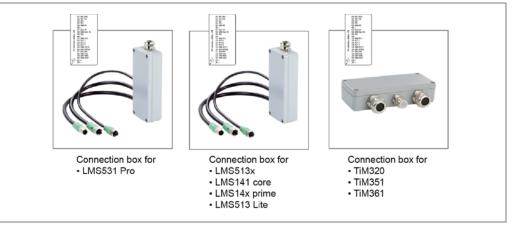


Fig. 77: Connection box terminal assignment

Note

The terminal assignment should not be affixed to the box for security reasons; it should be kept separately in a safe location.

Terminal assignment of the connection box for TiM3xx laser scanners

Terminal	Description	Terminal	Description			
Supply volta	age/inputs	Outputs	Outputs			
1	GND	21	OUT 1A			
2	10 V DC 28 V DC	22	OUT 1B			
3	IN 1	23	OUT_R1A			
4	IN 2	24	OUT_R1B			
5	IN 3	25	OUT 2A			
6	IN 4	26	OUT 2B			
7	INGND_ext	27	OUT_R2A			

8	n.c.	28	OUT_R2B
Sensor co	nnections (TiM3xx)	20	OUT 3A
9	GND	30	OUT 3B
10	10 V DC 28 V DC	31	OUT_R3A
11	IN 1	32	OUT_R3B
12	IN 2	Outputs/o	cover contact
13	IN 3	33	OUT 4A
14	IN 4	34	OUT 4B
15	INGND	35	OUT_R4A
16	OUT 1	36	OUT_R4B
17	OUT 2	37	Tamper A
18	OUT 3	38	Tamper B
19	OUT 4	39	Tamper A (wired)
20	n.c.	40	Tamper B (wired)

Tab. 29: Pin assignment of the connection box for TiM3xx laser scanners

The following color assignment applies when the laser scanners are connected using adapter cables with an M12 plug connector and open ends, which are available as accessories:

Terminal	Description	Cable (part number) 60427735 60427736 60427737 6050688	
9	GND	Brown	
10	10 V DC 28 V DC	Blue	
11	IN 1	White	
12	IN 2	Green	
13	IN 3	Violet	
14	IN 4	Gray-pink	
15	INGND	Red	
16	OUT 1	Pink	
17	OUT 2	Yellow	
18	OUT 3	Black	
19	OUT 4	Gray	
20	n.c.	Red-blue	

Terminal assignment of the connection box for LMS13x/LMS141 core/ LMS14x prime/LMS151 Lite

The terminal assignment of the connection box for the LMS13x/LMS141 core/LMS14x prime/LMS151 Lite laser scanners depends on the device type.

Terminal	LMS13x/LMS14x prime signal	LMS141 core/LMS531 Lite signal
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		

Project planning

15	
16	
17	
18	
19	
20	
21	
22	

Tab. 30: Pin assignment of the connection box for LMS13x, LMS14x prime, LMS141 core, LMS531 Lite

Terminal assignment of the connection box for LMS531 PRO laser scanners

Terminal	Description
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	-

Tab. 31: Pin assignment of the connection box for LMS531 PRO

6.8 Cleaning

All laser scanners have an optics cover to protect them. This optics cover can get dirty. Contamination reduces the energy emitted and received by the laser beam.

The scanned objects are perceived with less remission than they actually have. If the scanner lens becomes too contaminated, the laser's performance may be affected.

For this reason the contamination level is constantly checked during running operation and a contamination warning is sent when the dirt levels reach a certain point. If the cover gets dirtier, a **contamination error is sent**. The laser scanner switches off measurements in this case. Different strategies for the contamination measurement can be selected depending on the monitoring scenario.

Note The laser scanners are largely maintenance-free. The optics cover of the laser scanner should however be cleaned regularly and in the event of contamination. Do not use aggressive or coarse cleaning agents.

	Accessories	Description	Part number
	Plastic cleaner	Plastic cleaner and polish, anti- static	5600006
SICK	Lens cloth	Lens cloth	4003353

7 Scalable solutions with OPC

OPC technology plays an important role in large integrative solutions. OPC is the most widely accepted industrial communication standard. It allows communication between devices, controllers, and applications without the usual driver-related connection problems.

7.1 OPC makes integration easier

While conventional proprietary communication protocols allow products of a specific product range to communicate with one another, communication with third-party products requires special drivers.

OPC solves this driver problem by running an OPC server via a TCP/IP connection as a mediator between data sources and data receivers. The OPC server converts the proprietary protocols of the data sources and provides these as OPC objects. OPC object users are called OPC clients. These access the data provided by the OPC server via the network and convert the data back into the application format.

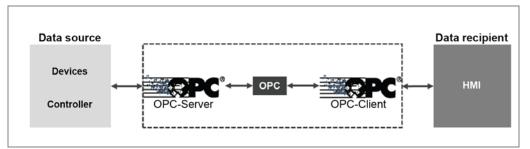


Fig. 78: OPC client/server architecture

OPC thus provides a universal way of communicating, simplifying the integration via industrial bus systems and protocols. As soon as an OPC connection is configured for a specific data source, all OPC-compatible applications can exchange data with this source. No new drivers are required.

The OPC technology allows quick integration of new devices into existing systems. With just a little cabling work, the new data sources of a provider and of the OPC server belonging to the data source can be integrated thanks to TCP/IP communication.

In this way, SICK laser scanners can also be easily integrated into existing OPC high security solutions. The scanners are integrated via SICK's own SOPAS OPC server. On the application side, the OPC server to be accessed just has to be specified in the OPC client.

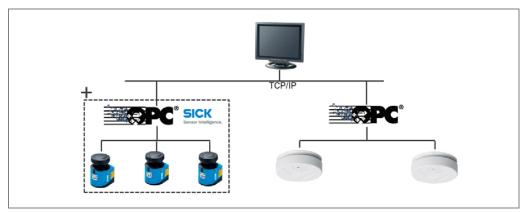


Fig. 79: Integration of laser scanners using SICK OPC server

7.2 Easy data handling with the SICK OPC server

The SICK OPC server follows the OPC-DA specification and can therefore be used on Windows operating systems.

Thanks to the SOPAS OPC server, SICK provides the option of integrating process data, status messages, and diagnostic information from SICK sensors into a visualization system. The server allows straightforward and fast integration into any HMI solution, irrespective of the technology used, thanks to OPC.

Interpreting output signals from the laser scanners via OPC is the easiest and most convenient way to view information about the security system in a monitoring control center. The laser scanners provide specific information based on OPC rather than data records, which can be moved to the graphical user interface using the drag and drop function and easily tracked there.

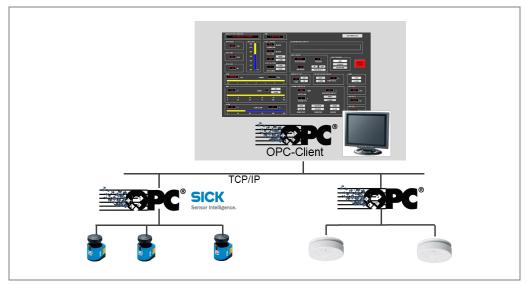


Fig. 80: Viewing information based on OPC

Via OPC, the following information can be transmitted and displayed on the screen:

- Alarm messages and physical visualization of the alarm
- Display of controlled dome cameras or tilting/turning heads
- Information about tampering or attempts to manipulate the system through unauthorized changes to parameters
- Device status for monitoring the laser scanners
- Information on the contamination levels of the laser scanners
- **Flexibility** While conventional control panels only provide lamps and segment displays to indicate status and diagnostic messages, graphical user interfaces are much more intuitive and informative.

Furthermore, changes on control panels often require a lot of work. On graphical user interfaces, new parameters can be quickly and easily represented on the screen.

- **Notes** Visualization via OPC does not contain a standard mechanism for real-time monitoring.
 - The SICK OPC server corresponds to the OPC standard 2.05.

Advantages at a glance

- Standardized data format
- Significant reduction of drivers and protocols
- · Easy implementation and low costs of commissioning
- User-friendly data handling (device data)
- No special knowledge about interfaces and data protocols required

8 Project planning examples

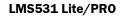
8.1 Selection guide

8.1.1 Device selection

	LMS12x	LMC12x	TiM320 TiM531	TiM361	LMC13x	LMS13x	LMS141 core	LMS14x prime	LMS531 Lite	LMS531 PRO
Fence/double fence/										
wall	-	-	-	-	-	+	+	+	++	+++
Open spaces	-	-	-	-	-	++	++	++	++	+++
Camera management										
and object tracking in										
open spaces	-	-	-	-	-	++	++	++	++	+++
Outer shell protection										
(facades)	-	-	-	+	-	++	++	++	++	+++
Roof protection	-	-	-	-	-	++	++	++	++	+++
Ceiling monitoring										
and wall penetration										
protection	+++	+++	+++	+++	+++	++	++	++	++	++
Painting protection	++	++	+++	+++	+++	++	++	++	++	++

Tab. 32: Selection guide (device selection)

8.1.2 Product characteristics


	LMS12x	LMC12x	TiM320	LMC13x	TiM351	TiM361	LMS13x	LMS141 core	LMS14x prime	LMS531 Lite	LMS531 PRO
Indoor/outdoor	Indoor	Indoor	Indoor	Indoor	Outdoor	Outdoor	Outdoor	Outdoor	Outdoor	Outdoor	Outdoor
Operating temperature range											
Enclosure rating	IP 65	IP 65	IP 65	IP 67	IP 67	IP 67	IP 67				
Scanning range											
Passing through zone (300 mm object)	18 m	18 m	2 m	18 m	6 m	8 m	40 m	30 m	30 m	40 m	40 m
People/objects reaching into zone (40 mm object)	9 m	9 m	1.5 m	9 m	2 m	6 m	12 m	12 m	12 m	12 m	12 m
VdS-certified		Class C		Class C				1	1	1	
Angular resolution											
Laser class	1	1	1	1	1	1	1	1	1	1	1
Interface											
OPC	X	x	x	x	x	x	Х	x	x	x	x
IP-Notify											
Ethernet	X	X	-	Х	Х	x	Х	x (1 Hz)	x	x (1 Hz)	x
RS232	X	X		x			X	x	x		x
RS422											x
RS485											x
CAN	Х	X	-	х	-	-	Х	-	x	-	x
Switching inputs	4	4	4	4	4	4	4	3	4	3	4
Switching outputs	2+1	2+1	4	2+1	4	4	2+1	2+1	2+1	2+1	4 internal
Number of analysis fields	10	10	10	10	10	10	10	4	10	4	10

Tab. 33: Selection guide (product characteristics)

8.2 Fence/double fence protection

8.2.1 Monitored area

The number of laser scanners depends on the device type and on the size of the monitored area.

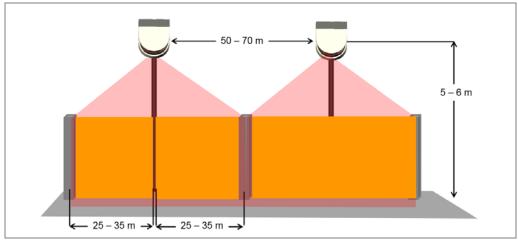
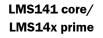



Fig. 81: LMS531 Lite/PRO monitored area (fence protection)

Dimension	Value
Scanning range of the laser scanner	40 m
Distance to laser scanners	50* to 70 m
Width of analysis field (left and right of LMS)	25* to 30 m
Total width of analysis field	approx. 50* m
Mounting height	5 to 6 m

* Recommended value to keep as reserve for poor weather conditions.

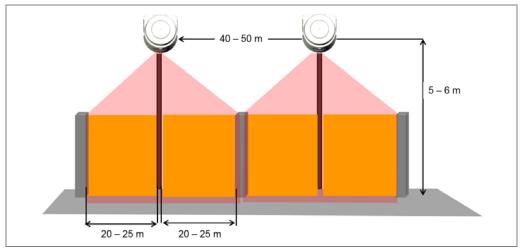


Fig. 82: LMS141 core/LMS14x prime monitored area (fence protection)

Dimension	Value
Scanning range of the laser scanner	30 m
Distance to laser scanners	40* to 50 m
Width of analysis field (left and right of LMS)	20* to 25 m
Total width of analysis field	approx. 40* m
Mounting height	5 to 6 m

* Recommended value to keep as reserve for poor weather conditions.

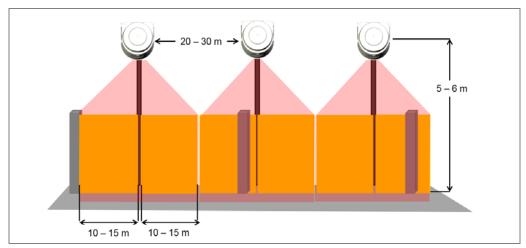


Fig. 83: LMS13x monitored area (fence protection)

Dimension	Recommended value
Scanning range of the laser scanner	18 m
Distance to laser scanners	20* to 30 m
Width of analysis field (left and right of LMS)	10* to 15 m
Total width of analysis field	approx. 20* m
Mounting height	5 to 6 m

* Recommended value to keep as reserve for poor weather conditions.

8.2.2 Installation situation

The detector is usually mounted on a post with a tilting angle of approx. 5 to 10° to the post.

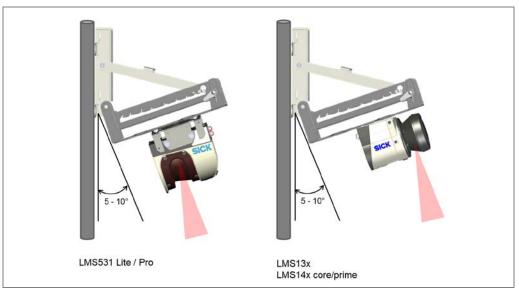


Fig. 84: Installation situation (fence protection)*

* The figure above shows the laser scanners without the recommended weather hoods to provide a better illustration.

8.2.3 Accessories

Post/wall brackets				
	Post/wall bracket with adapter plate for mounting the LMS13x and LMS14x core/prime laser scanners	1081413		
	Mounting bracket for mounting the connection box on the post/wall bracket for LMS1xx	2081636		
	Post/wall bracket with adapter plate for mounting the LMS531 Lite/PRO laser scanners	1081412		
Accessories for post mour	nting			
\bigcirc	Adjustable strap for post/wall bracket (2018304)	5306222		
	Adjustable strap lock for tightening, 2 pieces required	5306221		
Weather hoods (LMS13x)		1		
	Weather hood, 190°	2046459		
	Compact weather hood, 190°, for LMS1xx Color: deep black* * Other colors on request	2082563		
Weather hoods (LMS531 Lite/PRO)				
	Weather hood (large)	2063050		
	Weather hood (small)	2056850		

LMS13x, LMS14x core/prime, LMS531 Lite connection box				
	Connection box for power and I/O (not Ethernet), with three pre-wired M12 cables (length of cable approx. 40 cm) * The stub cables for the connection box must be laid by the customer.	2062346		
LMS531 PRO connection	box			
Connection box for power and I/O (not Ethernet), with three pre-wired M12 cables (length of cable approx. 40 cm) and tamper contact on housing cover * The stub cables for the connection box must be laid by the customer.		2063034		
Connecting cables	Connecting cables			
the lot	Connecting cables (Ethernet, Power, I/O, and Data Input) in 5 m, 10 m, and 20 m length * For direct connection of devices without connection box	* See under Accessories		

8.2.4 Recommended settings

If it is possible for someone to run through the monitored area (large distance between the monitored area and the fence), the analysis time should be reduced.

	Fence protection					
	LMS1xx LMS14x core/prime					
Default settings						
Scanning frequency/ resolution	50 Hz/0.5°	50 Hz/0.5°	75 Hz/0.5°			
Filter						
Particle filter		Active				
Echo filter		Last echo				
Fog filter		Active				
Contamination						
measurement						
Strategy		Available				
Evaluation case						
Strategy		Blanking				
Response time		150 ms				
Blanking size		200 mm				
Tamper protection		Active				
Depending on distance	Yes (1,000 mm)					
Outputs						
Logic		Active Low				
Restart	Time (500 ms)					

Tab. 34: Recommended settings (fence protection)

8.3 Facade protection

8.3.1 Monitored area

The number of laser scanners depends on the device type and on the maximum required detection distance. Switch between day and night mode for facade protection using the **Day/Night** switching input.

LMS531 Lite/PR0

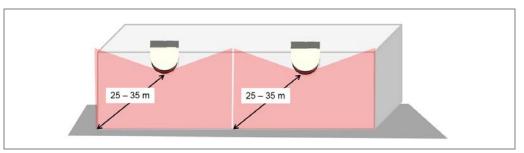


Fig. 85: LMS531 Lite/PRO monitored area (facade protection)

Dimension	Recommended value
Scanning range of the laser scanner	40 m
Recommended maximum detection distance	25 to 35 m

LMS14x core/prime

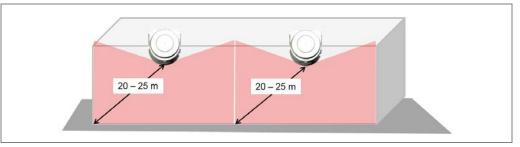


Fig. 86: LMS14x core/prime monitored area (facade protection)

Dimension	Recommended value
Scanning range of the laser scanner	30 m
Recommended maximum detection distance	20 to 25 m

LMS13x

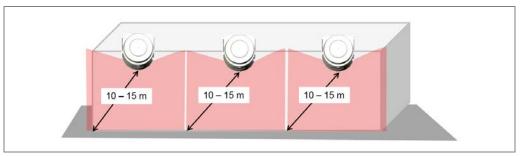


Fig. 87: LMS13x monitored area (facade protection)

Dimension	Recommended value	
Scanning range of the laser scanner	18 m	
Recommended detection distance	10 to 15 m	

TiM351/361

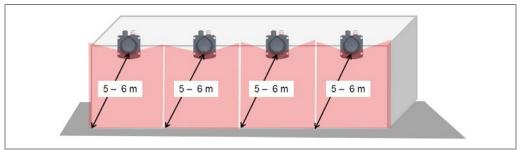


Fig. 88: TiM351/361 monitored area (facade protection)

Dimension	Recommended value
Scanning range of the laser scanner	8 m
Recommended detection distance	5 to 6 m

8.3.2 Installation situation

Detector is mounted on the facade as far out of reach as possible (tamper-proofing) with a tilt angle of 5 to 10° to the wall. A beam finder must be used to ensure that the laser beam hits the ground and not the facade.

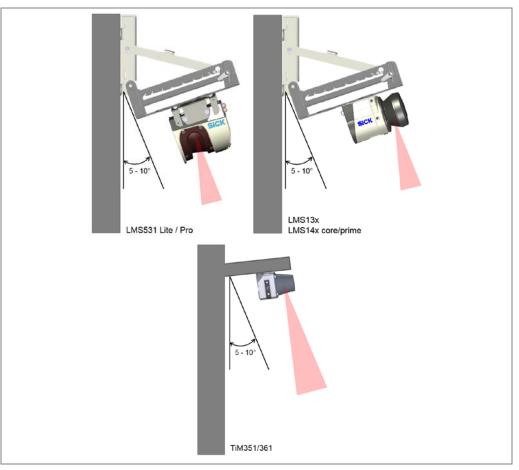


Fig. 89: Installation situation (facade protection)*

* The figure above shows the laser scanners without the recommended weather hoods to provide a better illustration.

8.3.3 Accessories

Post/wall brackets			
	Post/wall bracket with adapter plate for mounting the LMS13x and LMS14x core/prime laser scanners	1081413	
	Mounting bracket for mounting the connection box on the post/wall bracket for LMS1xx	2081636	
	Post/wall bracket with adapter plate for mounting the LMS531 Lite/PRO laser scanners	1081412	
Mounting bracket (TiM35:	1/361)		
	Mounting kit with sunshade/weather protection	2068398	
Weather hoods (LMS13x)			
	Weather hood, 190°	2046459	
	Compact weather hood, 190°, for LMS1xx Color: deep black* * Other colors on request	2082563	
Weather hoods (LMS531 Lite/PRO)			
	Weather hood (large)	2063050	
	Weather hood (small)	2056850	

LMS13x, LMS14x core/p	rime, LMS531 Lite connection box		
Connection box for power and I/O (not Ethernet), with three pre-wired M12 cables (length of cable approx. 40 cm) * The stub cables for the connection box must be laid by the customer.		2062346	
LMS531 PRO connection	box	1	
	Connection box for power and I/O (not Ethernet), with three pre-wired M12 cables (length of cable approx. 40 cm) and tamper contact on housing cover	2063034	
	* The stub cables for the connection box must be laid by the customer.		
TiM351/361 connection	box		
	Relay connection box for power, I/O, tamper contact, and 4 relays	2082916	
	* The stub cables for the connection box must be laid by the customer.	2002010	
Connecting cables (LMS1	3x, LMS14x core/prime, LMS531 Lite)		
Connecting cables (Ethernet, Power, I/O, and Data Input) in 5 m, 10 m, and 20 m length * For direct connection of devices without connection box		* See under Accessories	
Connecting cables (TiM3	51/361)		
Power and data connecting cable in 5 m, 10 m, and 20 m length * For direct connection of devices without connection box		* See under Accessories	

8.3.4 Recommended settings

			Facade protec	ction	
	TiM351	TiM361	LMS1xx	LMS531	LMS531
			LMS141 core/	Lite	PRO
			LMS14x prime		
Default settings					
Scanning frequency	15	Hz	50 Hz	50 Hz	75 Hz
Resolution	1°	0.33°	0.5°	0.5°	0.5°
Filter					
Particle filter		-		Active	
Echo filter		-		Last echo	
Fog filter		-	Active		
Contamination					
measurement					
Strategy		-	Available		
Evaluation case					
Strategy	Blar	nking	Blanking		
Response time	540) ms	500 ms		
Blanking size	250	mm	250 mm		
Tamper protection		-	Active		
Depending on					
distance	-		Yes (1000 mm)		
Outputs					
Logic	Activ	e Low	Active Low		
Restart	Time (4	169 ms)	Time (500 ms)		

If someone can run through the monitored area (large distance between the monitored area and the facade), the analysis time should be reduced.

Tab. 35: Recommended settings (facade protection)

Chapter 8

Building safety and security

8.4 **Open space protection**

8.4.1 Monitored area

The number and type of laser scanners depend on which areas of the open space are being protected. If necessary, several monitoring areas can be defined for each laser scanner. Approach roads and access paths can be blanked. At night, the system can switch to full monitoring via switching input **Day/Night**.

LMS531 Lite/PR0

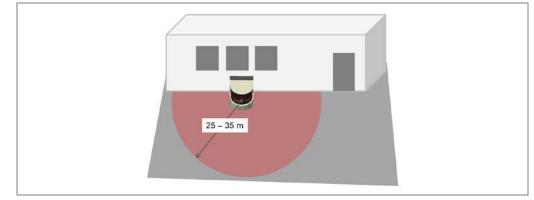
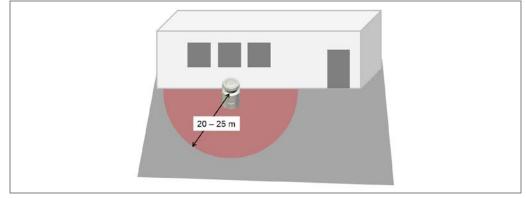



Fig. 90: LMS531 Lite/PRO monitored area (open space protection)

Dimension	Recommended value
Scanning range of the laser scanner	40 m
Recommended maximum detection distance	25 to 35 m

LMS14x core/prime

Fig. 91: LMS1341x core/prime monitored area (open space protection)

Dimension	Recommended value
Scanning range of the laser scanner	30 m
Recommended detection distance	20 to 25 m

LMS13x

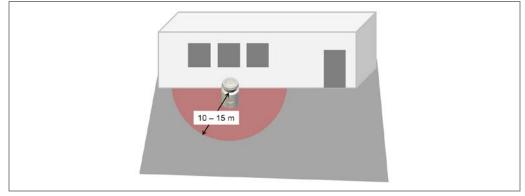


Fig. 92: LMS13x monitored area (open space protection)

Dimension	Recommended value
Scanning range of the laser scanner	18 m
Recommended detection distance	10 to 15 m

8.4.2 Mounting

SICK laser scanners are usually used horizontally for the monitoring of open spaces. The scanner should be mounted at a height of approx. 300 mm to protect again crawling through the detection zone, with a tilt angle of 5 to 10°. A beam finder must be used to ensure that the laser beam does not hit the ground within the monitored area and trigger an alarm.

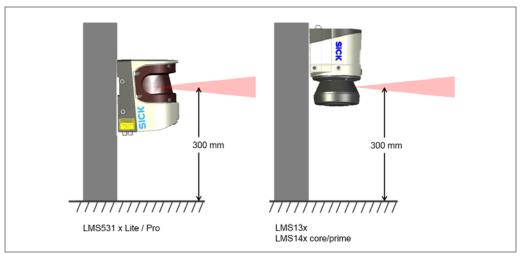


Fig. 93: Installation situation (open space protection)*

* The figure above shows the laser scanners without the recommended weather hoods to provide a better illustration.

When using the compact weather hood for the LMS1xx, overhead mounting is not possible.

8.4.3 Accessories

See "Facade protection".

8.4.4 Recommended settings

	Open space protection			
	LMS1xx	LMS531 Lite	LMS531 PRO	
Default settings				
Scanning frequency/	50 Hz/0.5°	50 Hz/0.5°	75 Hz/0.5°	
resolution				
Filter				
Particle filter		Active		
Echo filter	Last echo			
Fog filter	Active			
Contamination				
measurement				
Strategy	Available			
Evaluation case				
Strategy	Blanking			
Response time	1,000 ms			
Planking aiza	150 mm	at mounting height	< 1.2 m)/	
Blanking size	250 mm (a	(at mounting height 1.2-1.6 m)		
Tamper protection	Active			
Depending on distance	Yes (1000 mm)			
Outputs				
Logic	Active Low			
Restart	Time (500 ms)			

Tab. 36: Recommended settings (open space protection)

8.5 Roof protection

8.5.1 Monitored area

Flat roof protection is the same as open space protection. Roof structures casting shadows are taken into account in the planning of the monitoring fields.

8.5.2 Installation situation

The laser scanners are generally mounted directly onto the building. The monitoring field for the system is set up approx. 30 cm above the ground so that any persons crawling beneath the alarm zone are detected and registered. The edge of the monitoring field can also be placed slightly above the edge of the roof so that ladders, for instance, are detected at once.

8.5.3 Accessories

See "Facade protection".

8.5.4 Recommended settings

	Roof protection			
	LMS1xx	LMS531 Lite	LMS531 PRO	
Default settings				
Scanning frequency/	50 Hz/0.5°	50 Hz/0.5°	75 Hz/0.5°	
resolution				
Filter				
Particle filter		Active		
Echo filter		Last echo		
Fog filter		Active		
Contamination				
measurement				
Strategy	Available			
Evaluation case				
Strategy		Blanking		
Response time	1,000 ms			
Blanking size	70 mm			
Tamper protection		Active		
Depending on distance		Yes (1,000 mm)		
Outputs				
Logic		Active Low		
Restart		Time (500 ms)		

Tab. 37: Recommended settings (roof protection)

8.6 Painting protection

8.6.1 Monitored area

The number and type of laser scanners depends on how many paintings are being protected per laser scanner. Thanks to flexible day and night modes, individual areas can be secured throughout the day, while the entire wall, including the entrance, can be monitored at night.

The detection sharpness (resolution) can be set in the analysis case via the object size in order to protect again persons entering or reaching into the detection zone.

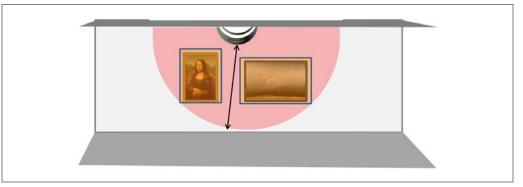


Fig. 94: Monitored area (painting protection)

Dimension	Recommended value	ue		
	LMS12x/LMC12x	TiM320	TiM351	TiM361
Scanning range of the laser scanner	18 m	2 m	8 m	8 m
Scanning range when monitoring for passing through the detection zone	15 m	2 m	6 m	8 m
Scanning range when monitoring for reaching into the detection zone	9 m	1.5 m	2 m	6 m

8.6.2 Installation situation

The scanner is mounted vertically pointed downwards out of reach (tamper-proofing) with a small space between the bottom of the device and the wall.

VdS-compliant LMC12x devices can only be mounted with the supplied mounting kit. The LMS12x, TiM320, and TiM351 laser scanners can be mounted with mounting kits which can be ordered as accessories.

A beam finder must be used to ensure that the laser beam hits the floor and not the wall with the paintings.

LMC12x/LMS12x

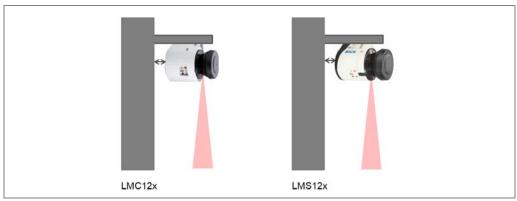
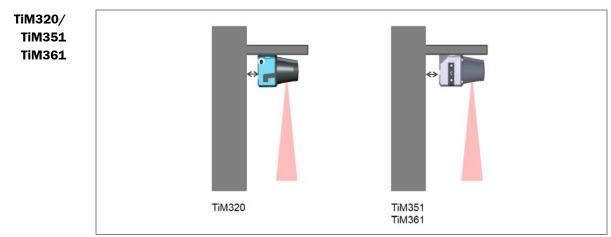
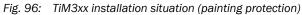
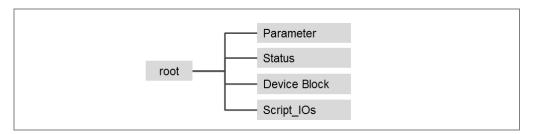




Fig. 95: LMC12x/LMS12x installation situation (painting protection)

8.6.3 Accessories

Mounting kits (LMS12x)	
L	Mounting kit 1A Mounting bracket for rear mounting on the wall	2034324
R	Mounting kit 1B Mounting bracket for rear mounting on the wall with optics cover protection	2034325
	Mounting kit 2 Cross-wise adjustment possible only in combination with mounting kit 1a or 1b	2039302
	Mounting kit 3 Longitudinal adjustment possible only in combination with mounting kit 2	2039303
Mounting kit (TiM320)		
F.	Mounting kit 2, impact protection and alignment aid	2061776


Mounting kit (TiM351/TiM361)				
	Mounting kit (with sun protection)	2068398		
Connection box (TiM35:	L/361)			
- 60 M 60	Relay connection box for power, I/O, tamper contact, and 4 relays * The stub cables for the connection box must be laid by the customer.	2082916		
Connection (TiM320)		·		
	Extension cable, female connector, D-Sub-HD, 15-pin, straight, 2 m	2043413		
Connection (TiM351/Til	Connection (TiM351/TiM361)			
	Connecting cables (Ethernet, Power) in 5 m, 10 m, and 20 m length	See Accessories		

8.6.4 Recommended settings

		Painting protection	n	
	LMS12x	LMC1xx	TiM320 TiM351	TiM361
Default settings				
Scanning frequency	50 Hz	50 Hz	15	Hz
Resolution	0.5°	0.5°	1°	0.33°
Filter				
Particle filter	Not a	ctive		-
Echo filter	Last e	echo		-
Fog filter	Not a	ctive		-
Contamination				
measurement				
Strategy	Available -			-
Evaluation case				
Strategy		Blanking		
Response time	25 ms to 100 ms	25 ms (VdS class C) 40 ms	134	l ms
		(VdS class B)		
Blanking size		40 mm (monitoring for reaching into the detection zone) 300 mm (monitoring for passing through the detection zone)		
Tamper protection	Acti	ve		-
Depending on distance	Yes (1000 mm)	-		-
Outputs				
Logic		Active Low		
Restart	Time (50	00 ms)	Time (4	69 ms)

Tab. 38: Recommended settings (painting protection)

8.7 Parameter assignment for SICK OPC server

Frequency AngleResolution Output_Data_Range ContaminationWarn ContaminationError FrontPaneEnable IP address Subnet mask	StartAngleStopAngle
ContaminationError FrontPaneEnable IP address	
IP address	
Subnet mask	
Gateway	
CurrentSpeed CurrentDirection HWInputNumActive	
InputState_{nn}	 With {nn} from "01""99"
Output_{nn}	With {nn} from "01""99"Counter
External_Output_{nn}	 State With {nn} from "01""99" Counter State
LED_Q1_State	
LED_Q2_State	
LED_Ok_State	
LED_Stop_State	
LED_CM_State	
AlphaNumDisplay	 SectionA SectionB SectionC SectionD SectionE SectionF SectionG
	LED_Q1_State LED_Q2_State LED_Ok_State LED_Stop_State

Sensor	 ContaminatorState PowerOnCount OperatingHours DailyOperatingHours LastUsername LastParametrizationDate LastParametrizationTime LastMaintenance NextMaintenance Temperature MeasurementState DeviceError DeviceState 	
FieldEval	EVC[n]_Result	 With[n]-EVC number; State = 1, if EVC condition met; State = 0, if EVC condition NOT met
Device_Block		
IncrementState	 Manufactor DeviceType FirmwareVersion OrderNumber SerialNumber DeviceName 	
Script_IOs		
Inputs	 Param.In_0 Param.In_3 Param.In_0_Mem. Param.In_3_Mem. 	
Outputs Tab. 39: Parameter assignment	Param.Out_0Param.In_7.	

Tab. 39: Parameter assignment for SICK OPC server

Notes The parameters depend on the device type used.

The SICK OPC server corresponds to the OPC standard 2.05.

9 Annex

9.1 List of tables

Tab. 1:	VdS-compliant devices	24
Tab. 2:	Devices for indoor monitoring	25
Tab. 3:	Devices for outdoor monitoring	26
Tab. 4:	Alarm types: faulty alarm, false alarm	41
Tab. 5:	Preliminary considerations (facade protection)	42
Tab. 6:	Preliminary considerations (fence protection)	42
Tab. 7:	Preliminary considerations (open space protection)	43
Tab. 8:	Preliminary considerations (roof protection)	43
Tab. 9:	Power consumption of laser scanner (overview)	46
Tab. 10:	Length of cable and cable cross-section (LMC12x/LMS12x connection)	47
Tab. 11:	Length of cable and cable cross-section (connection box for TiM351/TiM361)	51
Tab. 12:	Length of cable and cable cross-section (connection box for LMS1xx)	52
Tab. 13:	Length of cable and cable cross-section (connection box for LMS531 Lite)	52
Tab. 14:	Length of cable and cable cross-section (connection box for LMS531 PRO)	52
Tab. 15:	Variants for switching input Teach In	61
Tab. 16:	LMC12x/LMS12x pin assignment	77
Tab. 17:	TiM320 pin assignment	78
Tab. 18:	TiM320 adapter cable pin assignment	78
Tab. 19:	TiM351/TiM361 pin assignment (voltage supply/inputs and outputs)	79
Tab. 20:	LMC13x/LMS13x/LMS141 core/LMS14x prime pin assignment (voltage supply)	80
Tab. 21:	LMC13x/LMS13x/LMS141 core/LMS14x prime pin assignment (alarm)	80
Tab. 22:	LMC13x/LMS13x/LMS141 core/LMS14x prime pin assignment (inputs)	80
Tab. 23:	LMS531 Lite pin assignment (voltage supply)	81
Tab. 24:	LMS531 Lite pin assignment (alarm)	81
Tab. 25:	LMS531 Lite pin assignment (inputs)	81
Tab. 26:	LMS531 PRO pin assignment (voltage supply)	82
Tab. 27:	LMS531 PRO pin assignment (alarm)	82
Tab. 28:	LMS531 PRO pin assignment (inputs/data)	83
Tab. 29:	Pin assignment of the connection box for TiM3xx laser scanners	84
Tab. 30:	Pin assignment of the connection box for LMS13x, LMS14x prime, LMS141 core, LMS531 Lite	85
Tab. 31: Pi	n assignment of the connection box for LMS531 PRO	86
Tab. 32: Se	election guide (device selection)	91
Tab. 33: Se	election guide (product characteristics)	91
Tab. 34: R	ecommended settings (fence protection)	95
Tab. 35: R	ecommended settings (facade protection)	.100

Tab. 36: R	ecommended settings (open space protection)	103
Tab. 37:	Recommended settings (roof protection)	104
Tab. 38: R	ecommended settings (painting protection)	107
Tab. 39:	Parameter assignment for SICK OPC server	109

9.2 List of figures

Fig. 1:	2D laser scanner principle of operation	10
Fig. 2:	Pulse time-of-flight measurement principle of operation	11
Fig. 3:	Reflection of light on the surface of the object	12
Fig. 4:	Angle of reflection	12
Fig. 5:	Reflectance	13
Fig. 6:	Reflective surfaces	13
Fig. 7:	Beam divergence and object size	13
Fig. 8:	LMS1xx beam expansion	14
Fig. 9:	LMS1xx beam diameter	14
Fig. 10:	LMS5xx beam expansion	15
Fig. 11:	LMS5xx beam diameter	15
Fig. 12:	TiM3xx beam diameter	15
Fig. 13:	Monitoring fences, double fences, and walls	16
Fig. 14:	Monitoring of open spaces	17
Fig. 15:	Camera management and object tracking in open spaces	18
Fig. 16:	Outer shell protection (facades)	19
Fig. 17:	Roof protection	20
Fig. 18:	Ceiling monitoring and wall penetration protection	21
Fig. 19:	Painting protection	22
Fig. 20:	Flowchart for device selection	24
Fig. 21:	VdS-compliant mounting kits VdS1 long/VdS1 short	32
Fig. 22:	Analysis of the threat situation	41
Fig. 23:	Area behind the reference target in which no reflective surfaces are	
	allowed	
Fig. 24:	LMC12x/LMS12x connecting cables	
Fig. 25:	TiM320 connecting cables	
Fig. 26:	TiM351/TiM361 connecting cables	
Fig. 27:	LMC13x/LMS13x/LMS141 core/LMS14x prime connecting cables	
Fig. 28:	LMS531 Lite/LMS531 PRO connecting cables	
Fig. 29:	Connection box for TiM320	
Fig. 30:	Connection box for TiM351/TiM361	
Fig. 31:	Connection box for LMS13x/LMS141 core/LMS14x prime/LMS531 Lite	51
Fig. 32:	Filter - analysis fields - analysis cases - switching inputs	53
Fig. 33:	Particle filter principle of operation	54
Fig. 34:	Multi-echo analysis principle of operation	54
Fig. 35:	Scanning range and analysis fields	55

Annex

Building safety and security

Fig. 36:	Analysis cases, principle of operation	56
Fig. 37:	Pixel analysis principle of operation	
Fig. 38:	Blanking principle of operation	
Fig. 39:	Example for setting the alarm sensitivity	
Fig. 40:	Analysis strategy using fields	
Fig. 41:	Contour as reference analysis strategy	
Fig. 42:	Contour as reference principle of operation	
Fig. 43:	Protection against tampering thanks to contour as reference	
Fig. 44:	Combination of analysis strategies: fields and contour as reference	
Fig. 45:	Tamper-proofing against shadowing and dazzle	
Fig. 46:	Field breaches caused by changing ambient conditions	
Fig. 47:	Automatic field adjustment principle of operation	
Fig. 48:	Easy Teach Lite principle of operation	
Fig. 49:	Easy Teach: blanking objects from the field	
- Fig. 50:	Easy Teach: entering the monitoring field	
Fig. 51:	Easy Teach Lite: further optimizing a field	
Fig. 52:	Easy Teach PRO principle of operation	
Fig. 53:	Easy Teach PRO: monitoring fields before teach-in process	
Fig. 54:	Easy Teach PRO: monitoring fields after teach-in process	64
Fig. 55:	Easy Teach PRO: master field for contour as reference field	65
Fig. 56:	Easy Teach PRO: contour as reference field after being taught-in with	
	Easy Teach	65
Fig. 57:	Easy Teach PRO: problem of using facade monitoring without contour as reference field	66
Fig. 58:	Activating analysis cases (switching input Day/Night)	66
Fig. 59	Switching the laser scanner to sharp/not sharp (switching input Armed/Disarmed)	67
Fig. 60	Walk-through test mode (functional test switching input)	68
- Fig. 61:	Circuitry without resistance monitoring (LMC12x/LMS12x)	71
Fig. 62:	Circuitry without resistance monitoring (LMC13x/LMS13x/LMS141 core/LMS14x prime/LMS531 Lite/LMS531 PRO)	
Fig. 63:	Circuitry with resistance monitoring (LMC12x/LMS12x)	
Fig. 64:	Circuitry with resistance monitoring (LMC12x/LMS12x/LMS141	1 2
1 ig. 04.	core/LMS14x prime/LMS531 Lite/LMS531 PRO)	72
Fig. 65:	LMS12x/LMC12x/LMC13x/LMS13x/LMS141 core/LMS14x prime tamper-proofing	73
Fig. 66:	Analysis cases in expert mode	74
Fig. 67:	Field-based switching of cameras (overview)	74
Fig. 68:	Field-based camera control (direct)	75
Fig. 69:	Field-based camera control (via video management system)	75
Fig. 70:	Field-based camera control (via OPC)	75
Fig. 71:	How to integrate a laser scanner into Milestone XProtect	76
Fig. 72:		
$Fig. \ IZ.$	TiM320 adapter cable (with part number)	78
Fig. 72. Fig. 73:	TiM320 adapter cable (with part number) TiM351/TiM361 connecting cables (with part number)	

Fig. 74:	LMC13x/LMS13x/LMS141 core/LMS14x prime connecting cables (with part number)	80
Fig. 75:	LMS531 Lite connecting cables (with part number)	
Fig. 76:	LMS531 PRO connecting cables (with part number)	
Fig. 77:	Connection box terminal assignment	
Fig. 78:	OPC client/server architecture	
Fig. 79:	Integration of laser scanners using SICK OPC server	
Fig. 80:	Viewing information based on OPC	
Fig. 81:	LMS531 Lite/PRO monitored area (fence protection)	
Fig. 82:	LMS141 core/LMS14x prime monitored area (fence protection)	92
Fig. 83:	LMS13x monitored area (fence protection)	93
Fig. 84:	Installation situation (fence protection)*	93
Fig. 85:	LMS531 Lite/PRO monitored area (facade protection)	96
Fig. 86:	LMS14x core/prime monitored area (facade protection)	96
Fig. 87:	LMS13x monitored area (facade protection)	96
Fig. 88:	TiM351/361 monitored area (facade protection)	97
Fig. 89:	Installation situation (facade protection)*	97
Fig. 90:	LMS531 Lite/PRO monitored area (open space protection)	. 101
Fig. 91:	LMS1341x core/prime monitored area (open space protection)	. 101
Fig. 92:	LMS13x monitored area (open space protection)	. 102
Fig. 93:	Installation situation (open space protection)*	. 102
Fig. 94:	Monitored area (painting protection)	. 105
Fig. 95:	LMC12x/LMS12x installation situation (painting protection)	. 106
Fig. 96:	TiM3xx installation situation (painting protection)	. 106

Keywords index 9.3

A

Abbreviations	6
Alarm sensitivity	57
Alarm types	41
Analysis cases	
Activating/deactivating	66
Analysis fields	55
Adjusting automatically	60
Teach-in automatically	61
Analysis strategy	53
Angle of incidence	12
Angle of reflection	12
Armed/Disarmed	67

В

Beam divergence	13
Blanking	57

С

-	
Camera circuitry	74
CAN modules	39
CCTV	8
Ceiling monitoring	21
Circuitry	71
resistance-monitored	72
Cleaning	87
Connecting cables	36-46
Connection box	38-50
Contour as reference	58

D

-	
Day/Night	66
Day/night mode	66
Dazzle	59
Detection accuracy	53
Detection range	23
Detection systems	8
Device overview	27
Outdoor	29
VdS-compliant	27
Device selection	24
Dry contact solid state outputs	69

_

E
Environmental influences23
Evaluation cases55
Expert mode73
F
Facade protection19
Preliminary considerations42
False alarm41
Faulty alarm41
Fence protection16
Preliminary considerations42
Field adjustment60
Field-based camera control74
Filter53
Fine-adjustment unit34
Fog filter53
н
Heating
,
Indoor monitoring25
Devices
Information depth6
Infrared sensors
Inputs67
Armed/Disarmed67
Day/Night66
Teach IN61
Walk-through test68
K Keywords index 114
Laser measurement technology (overview)10
Laser scanner
Applications16
Laser scanner applications
Laser-guided detection methods
List of figures 111
List of tables

Μ

Measuring frequency 11	-
Milestone XProtect	5
Mounting 46	5
Mounting kits 32	,
VdS-compliant32	,
Multi-echo analysis 11-54	÷

0

Object size13	3
OPC	8
SICK OPC server89	9
Visualization89	9
OPC integration88	8
Open space protection 1	7
preliminary considerations43	3
With camera guidance18	8
Outdoor monitoring 20	ô
Devices29	Э

Ρ

Painting protection 22
Particle filter54
Pin assignments77
Pixel analysis56
Planning42
Post brackets
Power supply unit
Preliminary considerations
Project planning examples91
Pulse delay method11
R

Radar sensors8

Reflection	12
Remission	12
Resistance monitoring	72
Roof protection	20
Preliminary considerations	43

S

-	
Scan finder	. 40
Security analysis	.41
Shadowing	. 59
Sharp/not sharp	. 67
SOPAS	-73
Symbols	6

Т

Taking account of object size	56
Tamper-proofing	73
Contour as reference	58
Shadowing, dazzle	59
Target group	6
Target group Teach IN	
	61

V

W	
Voltage supply	46
Devices2	27
VdS guidelines	24

W

Walk-through test	68
Wall brackets	35
Weather hoods	31

Australia

Phone +61 3 9457 0600 1800 334 802 - tollfree E-Mail sales@sick.com.au

Belgium/Luxembourg Phone +32 (0)2 466 55 66 E-Mail info@sick.be

Brasil Phone +55 11 3215-4900 E-Mail sac@sick.com.br

Canada

Phone +1 905 771 14 44 E-Mail information@sick.com

Ceská Republika Phone +420 2 57 91 18 50 E-Mail sick@sick.cz

China

Phone +86 4000 121 000 E-Mail info.china@sick.net.cn Phone +852-2153 6300 E-Mail ghk@sick.com.hk

Danmark Phone +45 45 82 64 00 E-Mail sick@sick.dk

Deutschland Phone +49 211 5301-301 E-Mail kundenservice@sick.de

España Phone +34 93 480 31 00 E-Mail info@sick.es

France Phone +33 1 64 62 35 00 E-Mail info@sick.fr

Great Britain Phone +44 (0)1727 831121 E-Mail info@sick.co.uk

India Phone +91-22-4033 8333 E-Mail info@sick-india.com

Israel Phone +972-4-6881000 E-Mail info@sick-sensors.com Italia

Phone +39 02 27 43 41 E-Mail info@sick.it

Japan Phone +81 (0)3 3358 1341 E-Mail support@sick.jp

Magyarország Phone +36 1 371 2680 E-Mail office@sick.hu

Nederlands Phone +31 (0)30 229 25 44 E-Mail info@sick.nl Norge

Phone +47 67 81 50 00 E-Mail austefjord@sick.no Österreich Phone +43 (0)22 36 62 28 8-0 E-Mail office@sick.at

Polska Phone +48 22 837 40 50

E-Mail info@sick.pl România

Phone +40 356 171 120 E-Mail office@sick.ro Russia

Phone +7-495-775-05-30 E-Mail info@sick.ru

Schweiz Phone +41 41 619 29 39 E-Mail contact@sick.ch

Singapore Phone +65 6744 3732 E-Mail admin@sicksgp.com.sg

Slovenija Phone +386 (0)1-47 69 990 E-Mail office@sick.si

South Africa

Phone +27 11 472 3733 E-Mail info@sickautomation.co.za

South Korea Phone +82 2 786 6321/4 E-Mail info@sickkorea.net

Suomi Phone +358-9-25 15 800 E-Mail sick@sick.fi

Sverige Phone +46 10 110 10 00 E-Mail info@sick.se

Taiwan Phone +886 2 2375-6288 E-Mail sales@sick.com.tw

Türkiye Phone +90 (216) 528 50 00 E-Mail info@sick.com.tr

United Arab Emirates Phone +971 (0) 4 88 65 878 E-Mail info@sick.ae

USA/México Phone +1(952) 941-6780 1 (800) 325-7425 - tollfree E-Mail info@sickusa.com

More representatives and agencies at www.sick.com

